Clinical decision-making on the prognosis prediction of traumatic brain injury
-
摘要: 创伤性脑损伤(traumatic brain injury, TBI)预后的预测在临床决策中有着重要的意义,其重点是探讨特定患者或疾病相关特征对预后的影响。由于传统预测TBI患者预后的指标较为局限,探索新兴生物标记物及开发新模型渐成为近年来预测研究的热点。TBI预后预测因素的研究从不同的人群特征、患者差异、研究终点等方面入手,发现预后因素的单变量关系,分析调整与结局相关的变量,探求患者特定的疾病特征与其预后的相关性。TBI预后预测模型的研究以多维的预测因素角度为据,进行模型的说明、估算、评估、验证和展示。探索新兴TBI预后的预测标志物不仅在建立更为准确的TBI预测模型中起关键作用,亦对TBI后的风险分层和临床决策有重大帮助。此外,建立高效的TBI预后的预测模型可更加精确、实际的实现不同TBI患者间的对比及危险分层。目前TBI预后预测研究的局限性主要与患者信息的缺失、非线性效应的探索以及研究间异质性的评估有关。鉴于此,本文就近期的TBI患者预后预测研究的方法与原则进行综述,以期为今后开展TBI预后预测研究提供借鉴。在预测因素的研究中,强调患者选择、因素筛选及研究设计原则; 在预测模型的建立中,强调模型的开发及内、外部验证原则。Abstract: Prognosis and prediction of traumatic brain injury (TBI) play an important role in clinical decision-making which focuses on the influence of specific disease-related characteristics on prognosis. Given the limitation of previous predictors in patients with TBI, new biomarkers and models must be explored and developed. The predictive factors of TBI prognosis starts from different population characteristics, patient differences and study endpoints related to TBI, finds or establishing univariate relationships, as well as analysing and adjusting relationship of variables related to outcome, and explores the relationship between specific disease characteristics and prognosis. A TBI prediction model of prognosis is built on the basis of multidimensional predictive factors. The performance of this model is explained, estimated, evaluated and verified. Determining proper prognostic markers of TBI not only is useful in building a more accurate TBI prediction model, but also is essential for risk stratification and clinical decision-making after TBI diagnosis. In addition, the building of a TBI prediction model can achieve more accurate and practical comparison among different models, as well as contribute to risk stratification among different patients with TBI. The limitations of research on TBI prognosis prediction are mainly related to the lack of prognostic information, the exploration of nonlinear effects and the evaluation of heterogeneity among studies. This paper reviews the current methods and principles of prognosis prediction of patients with TBI to provide a reference for future investigations on TBI prognosis prediction. We emphasize the importance of patient selection, factor screening and research design in studying predictive factors. In establishing a prediction model, we highlight the necessity of model development and the principle of internal and external validation.
-
Key words:
- Traumatic brain injury /
- Outcome /
- Prediction research /
- Prognostic factor /
- Prediction model
-
表 1 CRASH和IMPACT预测模型
模型 核心症状 CT模型 实验室模型 CRASH模型 年龄, GCS评分, 瞳孔对光反应, 严重的颅外损伤 核心症状合并: 点状出血, 第三脑室或基底池闭塞, 蛛网膜下腔出血, 中线偏移, 无法清除的血肿 - IMPACT模型 年龄, 运动评分, 瞳孔对光反应 核心症状合并: 缺氧, 低血压, CT分型, 外伤性蛛网膜下腔出血, 硬膜外血肿 CT模型合并: 葡萄糖和血红蛋白浓度变化 注:“-”表示无相应内容。 -
[1] ZHENG R Z, LEI Z Q, YANG R Z, et al. Identification and management of paroxysmal sympathetic hyperactivity after traumatic brain injury[J]. Front Neurol, 2020, 11: 81. doi: 10.3389/fneur.2020.00081 [2] JIANG J Y, GAO G Y, FENG J F, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295. doi: 10.1016/S1474-4422(18)30469-1 [3] TURGEON A F, DORRANCE K, ARCHAMBAULT P, et al. Factors influencing decisions by critical care physicians to withdraw life-sustaining treatments in critically ill adult patients with severe traumatic brain injury[J]. CMAJ, 2019, 191(24): E652-E663. doi: 10.1503/cmaj.190154 [4] RETEL H I R A, LINGSMA H F, TURGEON A F, et al. Prognostic research in traumatic brain injury: markers, modeling, and methodological principles[J]. J Neurotrauma, 2020. DOI: 10.1089/neu.2019.6708. [5] KIM H, KIM Y T, SONG E S, et al. Changes in the gray and white matter of patients with ischemic-edematous insults after traumatic brain injury[J]. J Neurosurg, 2018(1): 11. http://www.researchgate.net/publication/328917360_Changes_in_the_gray_and_white_matter_of_patients_with_ischemic-edematous_insults_after_traumatic_brain_injury [6] COLLABORATORS C T. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial[J]. Lancet, 2019, 394(10210): 1713-1723. doi: 10.1016/S0140-6736(19)32233-0 [7] DIJKLAND S A, FOKS K A, POLINDER S, et al. Prognosis in moderate and severe traumatic brain injury: a systematic review of contemporary models and validation studies[J]. J Neurotrauma, 2020, 37(1): 1-13. doi: 10.1089/neu.2019.6401 [8] 袁华, 刘龙, 彭媛. 脑外伤患者血清降钙素原、白介素-6的动态变化及其临床意义[J]. 徐州医学院学报, 2017, 37(8): 544-546. doi: 10.3969/j.issn.1000-2065.2017.08.016 [9] WANG K K, YANG Z, ZHU T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert Rev Mol Diagn, 2018, 18(2): 165-180. doi: 10.1080/14737159.2018.1428089 [10] COOPER J D, NICHOL D A, BAILEY M, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial[J]. JAMA, 2018, 320(21): 2211-2220. doi: 10.1001/jama.2018.17075 [11] STEYERBERG E W, HARRELL F E. Prediction models need appropriate internal, internal-external, and external validation[J]. J Clin Epidemiol, 2016, 69: 245-247. doi: 10.1016/j.jclinepi.2015.04.005 [12] OKONKWO D O, SHUTTER L A, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-Ⅱ: a phase Ⅱ randomized trial[J]. Crit Care Med, 2017, 45(11): 1907-1914. doi: 10.1097/CCM.0000000000002619 [13] GHALAENOVI H, FATTAHI A, KOOHPAYEHZADEH J, et al. The effects of amantadine on traumatic brain injury outcome: a double-blind, randomized, controlled, clinical trial[J]. Brain Inj, 2018, 32(8): 1050-1055. doi: 10.1080/02699052.2018.1476733 [14] HEUS P, DAMEN J, PAJOUHESHNIA R, et al. Uniformity in measuring adherence to reporting guidelines: the example of TRIPOD for assessing completeness of reporting of prediction model studies[J]. BMJ Open, 2019, 9(4): e025611. doi: 10.1136/bmjopen-2018-025611 [15] DEWAN M C, MUMMAREDDY N, WELLONS J C, et al. Epidemiology of global pediatric traumatic brain injury: qualitative review[J]. World Neurosurg, 2016, 91: 497-509. doi: 10.1016/j.wneu.2016.03.045 [16] CRAWFORD A M, YANG S, HU P, et al. Concomitant chest trauma and traumatic brain injury, biomarkers correlate with worse outcomes[J]. J Trauma Acute Care Surg, 2019, 87(1S Suppl 1): S146-S151. http://www.ncbi.nlm.nih.gov/pubmed/30882765 [17] MUTCH C A, TALBOTT J F, GEAN A. Imaging evaluation of acute traumatic brain injury[J]. Neurosurg Clin N Am, 2016, 27(4): 409-439. doi: 10.1016/j.nec.2016.05.011 [18] PIN-ON P, SARINGKARINKUL A, PUNJASAWADWONG Y, et al. Serum electrolyte imbalance and prognostic factors of postoperative death in adult traumatic brain injury patients: a prospective cohort study[J]. Medicine(Baltimore), 2018, 97(45): e13081. http://www.onacademic.com/detail/journal_1000042298757899_42ed.html [19] 赵香梅, 秦历杰, 李法良, 等. Tp-e间期和Tp-e/QT比值对急性脑外伤患者预后的预测[J]. 中华急诊医学杂志, 2020, 29(2): 253-256. doi: 10.3760/cma.j.issn.1671-0282.2020.02.0027 [20] 赵瑞, 何影, 周静, 等. 载脂蛋白E及其基因多态性对中枢神经损伤的修复、预后影响研究进展[J]. 山东医药, 2017, 57(23): 112-114. doi: 10.3969/j.issn.1002-266X.2017.23.035 [21] STENBERG M, KOSKINEN L D, JONASSON P, et al. Computed tomography and clinical outcome in patients with severe traumatic brain injury[J]. Brain Inj, 2017, 31(3): 351-358. doi: 10.1080/02699052.2016.1261303 [22] RUBIN M L, YAMAL J M, CHAN W, et al. Prognosis of six-month Glasgow outcome scale in severe traumatic brain injury using hospital admission characteristics, injury severity characteristics, and physiological monitoring during the first day post-injury[J]. J Neurotrauma, 2019, 36(16): 2417-2422. doi: 10.1089/neu.2018.6217 [23] LI Z, WU X, WU X, et al. Admission circulating monocytes level is an independent predictor of outcome in traumatic brain injury[J]. Brain Inj, 2018, 32(4): 515-522. doi: 10.1080/02699052.2018.1429023 [24] VAN DER NAALT J, TIMMERMAN M E, DE KONING M E, et al. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study[J]. Lancet Neurol, 2017, 16(7): 532-540. doi: 10.1016/S1474-4422(17)30117-5 [25] BRENNAN P M, MURRAY G D, TEASDALE G M. Simplifying the use of prognostic information in traumatic brain injury. Part 1: The GCS-Pupils score: an extended index of clinical severity[J]. J Neurosurg, 2018, 128(6): 1612-1620. doi: 10.3171/2017.12.JNS172780 [26] ORITO K, HIROHATA M, NAKAMURA Y, et al. Predictive value of leakage signs for pure brain contusional hematoma expansion[J]. J Neurotrauma, 2018, 35(5): 760-766. doi: 10.1089/neu.2017.5247 [27] LI Q, LIU Q J, YANG W S, et al. Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage[J]. Stroke, 2017, 48(11): 3019-3025. doi: 10.1161/STROKEAHA.117.017985 [28] WOLAHAN S M, PRINS M L, MCARTHUR D L, et al. Influence of glycemic control on endogenous circulating ketone concentrations in adults following traumatic brain injury[J]. Neurocrit Care, 2017, 26(2): 239-246. doi: 10.1007/s12028-016-0313-3 [29] SUN H, LINGSMA H F, STEYERBERGT E W, et al. External validation of the international mission for prognosis and analysis of clinical trials in traumatic brain injury: prognostic models for traumatic brain injury on the study of the neuroprotective activity of progesterone in severe traumatic brain injuries trial[J]. J Neurotrauma, 2016, 33(16): 1535-1543. doi: 10.1089/neu.2015.4164 [30] IOANNIDIS J P A, BOSSUYT P M M. Waste, leaks, and failures in the biomarker pipeline[J]. Clin Chem, 2017, 63(5): 963-972. doi: 10.1373/clinchem.2016.254649 [31] POSTI J P, TAKALA R S K, LAGERSTEDT L, et al. Correlation of blood biomarkers and biomarker panels with traumatic findings on computed tomography after traumatic brain injury[J]. J Neurotrauma, 2019, 36(14): 2178-2189. doi: 10.1089/neu.2018.6254 [32] GUO H, LIU R, SUN Z, et al. Evaluation of prognosis in patients with severe traumatic brain injury using resting-state functional magnetic resonance imaging[J]. World Neurosurg, 2019, 121: e630-e639. doi: 10.1016/j.wneu.2018.09.178 [33] CHEN W, YANG J, LI B, et al. Neutrophil to lymphocyte ratio as a novel predictor of outcome in patients with severe traumatic brain injury[J]. J Head Trauma Rehabil, 2018, 33(1): E53-E59. doi: 10.1097/HTR.0000000000000320 [34] HAGHBAYAN H, BOUTIN A, LAFLAMME M, et al. The prognostic value of MRI in moderate and severe traumatic brain injury: a systematic review and meta-analysis[J]. Crit Care Med, 2017, 45(12): e1280-e1288. doi: 10.1097/CCM.0000000000002731 [35] RANSON J, MAGNUS B E, TEMKIN N, et al. Diagnosing the GOSE: structural and psychometric properties using item response theory, a TRACK-TBI pilot study[J]. J Neurotrauma, 2019, 36(17): 2493-2505. doi: 10.1089/neu.2018.5998 [36] CNOSSEN M C, VAN DER NAALT J, SPIKMAN J M, et al. Prediction of persistent post-concussion symptoms after mild traumatic brain injury[J]. J Neurotrauma, 2018, 35(22): 2691-2698. doi: 10.1089/neu.2017.5486 [37] BOOKER J, SINHA S, CHOUDHARI K, et al. Predicting functional recovery after mild traumatic brain injury: the SHEFBIT cohort[J]. Brain Inj, 2019, 33(9): 1158-1164. doi: 10.1080/02699052.2019.1629626 [38] SPITZ G, MCKENZIE D, ATTWOOD D, et al. Cost prediction following traumatic brain injury: model development and validation[J]. J Neurol Neurosurg Psychiatry, 2016, 87(2): 173-180. http://europepmc.org/abstract/med/25694473 [39] BONOW R H, BARBER J, TEMKIN N R, et al. The outcome of severe traumatic brain injury in Latin America[J]. World Neurosurg, 2018, 111: e82-e90. doi: 10.1016/j.wneu.2017.11.171 [40] Al SAIEGH F, PHILIPP L, MOUCHTOURIS N, et al. Comparison of outcomes of severe traumatic brain injury in 36, 929 patients treated with or without intracranial pressure monitoring in a mature trauma system[J]. World Neurosurg, 2020, 136: e535-e541. doi: 10.1016/j.wneu.2020.01.070
点击查看大图
表(1)
计量
- 文章访问数: 252
- HTML全文浏览量: 73
- PDF下载量: 7
- 被引次数: 0