留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨关节炎疼痛的机制

秦夕茹 张立智

秦夕茹, 张立智. 骨关节炎疼痛的机制[J]. 中华全科医学, 2021, 19(6): 1001-1007. doi: 10.16766/j.cnki.issn.1674-4152.001971
引用本文: 秦夕茹, 张立智. 骨关节炎疼痛的机制[J]. 中华全科医学, 2021, 19(6): 1001-1007. doi: 10.16766/j.cnki.issn.1674-4152.001971
QIN Xi-ru, ZHANG Li-zhi. Mechanisms of Osteoarthritis Pain[J]. Chinese Journal of General Practice, 2021, 19(6): 1001-1007. doi: 10.16766/j.cnki.issn.1674-4152.001971
Citation: QIN Xi-ru, ZHANG Li-zhi. Mechanisms of Osteoarthritis Pain[J]. Chinese Journal of General Practice, 2021, 19(6): 1001-1007. doi: 10.16766/j.cnki.issn.1674-4152.001971

骨关节炎疼痛的机制

doi: 10.16766/j.cnki.issn.1674-4152.001971
基金项目: 

国家自然科学基金面上项目 81572218

上海市自然科学基金 13ZR1439100

上海市卫生局局级课题面上项目科研基金 20124303

详细信息
    通讯作者:

    张立智,E-mail:drzhanglizhi001@163.com

  • 中图分类号: R684.3  R441.1

Mechanisms of Osteoarthritis Pain

  • 摘要: 骨关节炎(osteoarthritis,OA)是最常见的关节疾病,其发病率逐年增加,目前尚无有效的治愈方法,是导致老年人功能残疾的常见原因之一。对膝OA的认识不足、预防及治疗延迟是导致其发病率逐年升高的重要原因。疼痛是OA的早期警示信号,也是OA的主要症状,还是临床最重要的诊断依据。由于目前对早期疼痛重视不足,对患者疼痛的原因和机制认识不足,常会导致OA疼痛的治疗效果不佳,患者对治疗效果不满意,病变持续进展,甚至导致患者关节残疾,最终需要进行关节置换。因此,很有必要了解疼痛产生的原因,疼痛的特点,疼痛的传导与感知,疼痛与骨关节炎病变发生、发展之间的关系,以及疼痛的病理生理学机制。研究显示,OA疼痛具有复杂的病理生理学机制,它不仅是异常应力和生物学作用下关节的伤害性疼痛,还和局部炎症、外周和中枢神经病变紧密相关,也受多种因素调节(如患者的精神、遗传因素和气候影响等)。而且,临床研究强调OA疼痛并不是单一的和固定不变的。疼痛的发生是可以独立于结构改变而存在的,而且在不同患者和不同的特定时间发生程度也不同。本文对OA疼痛机制的研究进展进行综述,以期有利于辅助医师在临床工作中探寻治疗效果不佳的原因,改善治疗效果,对疼痛进行从基础到临床科学地转化研究,有利于将来对OA疼痛患者进行最佳管理。

     

  • [1] VAN DER HEIJDEN R A, OEI E H, BRON E E, et al. No difference on quantitative magnetic resonance imaging in patellofemoral cartilage composition between patients with patellofemoral pain and healthy controls[J]. Am J Sports Med, 2016, 44(5): 1172-1178. doi: 10.1177/0363546516632507
    [2] OKWERA A, MAY S. Views of general practitioners toward physiotherapy management of osteoarthritis-a qualitative study[J]. Physiother Theory Pract, 2019, 35(10): 940-946. doi: 10.1080/09593985.2018.1459987
    [3] MACKOWIAK J, JONES J T, DASA V. A comparison of 4-year total medical care costs, adverse outcomes, and opioid/prescription analgesic use for 3 knee osteoarthritis pain treatments: Intra-articular hyaluronic acid, intra-articular corticosteroids, and knee arthroplasty[J]. Semin Arthritis Rheum, 2020, 50(6): 1525-1534. doi: 10.1016/j.semarthrit.2020.01.003
    [4] KULKARNI K, KARSSIENS T, KUMAR V, et al. Obesity and osteoarthritis[J]. Maturitas, 2016, 89: 22-28. doi: 10.1016/j.maturitas.2016.04.006
    [5] TEIRLINCK C H, SONNEVELD D S, BIERMA-ZEINSTRA S M A, et al. Daily pain measurements and retrospective pain measurements in hip osteoarthritis patients with intermittent pain[J]. Arthritis Care Res (Hoboken), 2019, 71(6): 768-776. doi: 10.1002/acr.23711
    [6] FU K, ROBBINS S R, MCDOUGALL J J. Osteoarthritis: the genesis of pain[J]. Rheumatology (Oxford), 2018, 57(suppl_4): iv43-iv50. doi: 10.1093/rheumatology/kex419
    [7] DE LOGU F, GEPPETTI P. Ion channel pharmacology for pain modulation[J]. Handb Exp Pharmacol, 2019, 260: 161-186. doi: 10.1007/164_2019_336
    [8] O'NEILL T W, FELSON D T Mechanisms of osteoarthritis (OA) pain[J]. Curr Osteoporos Rep, 2018, 16(5): 611-616. doi: 10.1007/s11914-018-0477-1
    [9] HE B H, CHRISTIN M, MOUCHBAHANI-CONSTANCE S, et al. Mechanosensitive ion channels in articular nociceptors drive mechanical allodynia in osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25(12): 2091-2099. doi: 10.1016/j.joca.2017.08.012
    [10] KAWARAI Y, ORITA S, NAKAMURA J, et al. Analgesic effect of duloxetine on an animal model of monosodium iodoacetate-induced hip osteoarthritis[J]. J Orthop Res, 2020, 38(2): 422-430. doi: 10.1002/jor.24480
    [11] LACAGNINA M J, WATKINS L R, GRACE P M. Toll-like receptors and their role in persistent pain[J]. Pharmacol Ther, 2018, 184: 145-158. doi: 10.1016/j.pharmthera.2017.10.006
    [12] KALAITZOGLOU E, GRIFFIN T M, HUMPHREY M B. Innate immune responses and osteoarthritis[J]. Curr Rheumatol Rep, 2017, 19(8): 45. doi: 10.1007/s11926-017-0672-6
    [13] ROSENBERG J H, RAI V, DILISIO M F, et al. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: Potentially novel therapeutic targets[J]. Mol Cell Biochem, 2017, 434(1-2): 171-179. doi: 10.1007/s11010-017-3047-4
    [14] NEFLA M, HOLZINGER D, BERENBAUM F, et al. The danger from within: alarmins in arthritis[J]. Nat Rev Rheumatol, 2016, 12(11): 669-683. doi: 10.1038/nrrheum.2016.162
    [15] DENK F, BENNETT D L, MCMAHON S B. Nerve growth factor and pain mechanisms[J]. Annu Rev Neurosci, 2017, 40: 307-325. doi: 10.1146/annurev-neuro-072116-031121
    [16] NEES T A, ROSSHIRT N, REINER T, et al. Inflammation and osteoarthritis-related pain[J]. Schmerz, 2019, 33(1): 4-12. doi: 10.1007/s00482-018-0346-y
    [17] SCHAIBLE H G. Osteoarthritis pain. Recent advances and controversies[J]. Curr Opin Support Palliat Care, 2018, 12(2): 148-153. doi: 10.1097/SPC.0000000000000334
    [18] MILLER R E, KIM Y S, TRAN P B, et al. Visualization of peripheral neuron sensitization in a surgical mouse model of osteoarthritis by in vivo calcium imaging[J]. Arthritis Rheumatol, 2018, 70(1): 88-97. doi: 10.1002/art.40342
    [19] ZHANG F, LIU Y, ZHANG D, et al. Suppression of KCNQ/M potassium channel in dorsal root ganglia neurons contributes to the development of osteoarthritic pain[J]. Pharmacology, 2019, 103(5-6): 257-262. doi: 10.1159/000496422
    [20] TROUVIN A P, PERROT S. Pain in osteoarthritis. Implications for optimal management[J]. Joint Bone Spine, 2018, 85(4): 429-434. doi: 10.1016/j.jbspin.2017.08.002
    [21] BARTLEY E J, KING C D, SIBILLE K T, et al. Enhanced pain sensitivity among individuals with symptomatic knee osteoarthritis: Potential sex differences in central sensitization[J]. Arthritis Care Res (Hoboken), 2016, 68(4): 472-480. doi: 10.1002/acr.22712
    [22] VINCENT T L. Mechanoflammation in osteoarthritis pathogenesis[J]. Semin Arthritis Rheum, 2019, 49(3S): S36-S38. http://www.sciencedirect.com/science/article/pii/S0049017219306535
    [23] CHANG S H, MORI D, KOBAYASHI H, et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway[J]. Nat Commun, 2019, 10(1): 1442. doi: 10.1038/s41467-019-09491-5
    [24] CHOI W S, LEE G, SONG W H, et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis[J]. Nature, 2019, 566(7743): 254-258. doi: 10.1038/s41586-019-0920-1
    [25] WU J, WANG K, XU J, et al. Associations between serum ghrelin and knee symptoms, joint structures and cartilage or bone biomarkers in patients with knee osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25(9): 1428-1435. doi: 10.1016/j.joca.2017.05.015
    [26] LEE S H, KWON J Y, JHUN J, et al. Lactobacillus acidophilus ameliorates pain and cartilage degradation in experimental osteoarthritis[J]. Immunol Lett, 2018, 203: 6-14. doi: 10.1016/j.imlet.2018.07.003
    [27] KLEIN-WIERINGA I R, DE LANGE-BROKAAR B J, YUSUF E, et al. Inflammatory cells in patients with endstage knee osteoarthritis: A comparison between the synovium and the infrapatellar fat pad[J]. J Rheumatol, 2016, 43(4): 771-778. doi: 10.3899/jrheum.151068
    [28] LI Y S, LUO W, ZHU S A, et al. T cells in osteoarthritis: Alterations and beyond[J]. Front Immunol, 2017, 8: 356. doi: 10.3389/fimmu.2017.00356/pdf
    [29] EYMARD F, CHEVALIER X. Inflammation of the infrapatellar fat pad[J]. Joint Bone Spine, 2016, 83(4): 389-393. doi: 10.1016/j.jbspin.2016.02.016
    [30] WANG Q, LEPUS C M, RAGHU H, et al. Ige-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis[J]. Elife, 2019, 8: e39905. http://www.researchgate.net/publication/333090533_IgE-mediated_mast_cell_activation_promotes_inflammation_and_cartilage_destruction_in_osteoarthritis/download
    [31] BORBÉLY É, SÁNDOR K, MARKOVICS A, et al. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees[J]. Inflamm Res, 2016, 65(9): 725-736. doi: 10.1007/s00011-016-0954-x
    [32] MULEY M M, REID A R, BOTZ B, et al. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2[J]. Br J Pharmacol, 2016, 173(4): 766-777. doi: 10.1111/bph.13237
    [33] 曾允富, 卞阳阳, 王溶, 等. 梓醇抑制骨关节炎发病机制的研究[J]. 中华全科医学, 2019, 17(10): 1626-1630, 1651. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201910004.htm
    [34] 陈亮, 杨晓凌. 骨关节炎患者血清中炎性因子IL-1β、IL-6和COX-2的表达[J]. 中国临床医学, 2016, 23(1): 61-62. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYX201601017.htm
    [35] WALSH D A. Editorial: Synovitis and pain sensitization[J]. Arthritis Rheumatol, 2016, 68(3): 561-562. doi: 10.1002/art.39487
    [36] LEUNG Y Y, HUEBNER J L, HAALAND B, et al. Synovial fluid pro-inflammatory profile differs according to the characteristics of knee pain[J]. Osteoarthritis Cartilage, 2017, 25(9): 1420-1427. doi: 10.1016/j.joca.2017.04.001
    [37] MILLER R E, TRAN P B, ISHIHARA S, et al. Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28(5): 581-592. doi: 10.1016/j.joca.2020.01.008
    [38] 施利华, 李恒, 郭潘, 等. miRNA-27a和miRNA-146a在骨性关节炎患者中的诊断意义[J]. 中华全科医学, 2020, 18(3): 412-414, 418. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202003020.htm
    [39] 李坤, 张育民, 王亚康, 等. 上调microRNA-543表达对大鼠骨关节炎软骨细胞的保护作用[J]. 中国临床医学, 2018, 25(2): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYX201802015.htm
    [40] EDWARDS R R, DWORKIN R H, SULLIVAN M D, et al. The role of psychosocial processes in the development and maintenance of chronic pain[J]. J Pain, 2016, 17(9 Suppl): T70-92.
    [41] TURK D C, FILLINGIM R B, OHRBACH R, et al. Assessment of psychosocial and functional impact of chronic pain[J]. J Pain, 2016, 17(9 Suppl): T21-49.
    [42] HELMINEN E E, SINIKALLIO S H, VALJAKKA A L, et al. Determinants of pain and functioning in knee osteoarthritis: A one-year prospective study[J]. Clin Rehabil, 2016, 30(9): 890-900. doi: 10.1177/0269215515619660
  • 加载中
计量
  • 文章访问数:  202
  • HTML全文浏览量:  155
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回