留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼光谱在病毒检测中的应用及研究进展

王晓晶 张辉 李连友 府伟灵 张阳

王晓晶, 张辉, 李连友, 府伟灵, 张阳. 拉曼光谱在病毒检测中的应用及研究进展[J]. 中华全科医学, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109
引用本文: 王晓晶, 张辉, 李连友, 府伟灵, 张阳. 拉曼光谱在病毒检测中的应用及研究进展[J]. 中华全科医学, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109
WANG Xiao-jing, ZHANG Hui, LI Lian-you, FU Wei-ling, ZHANG Yang. Research progress and application of Raman spectroscopy in virus detection[J]. Chinese Journal of General Practice, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109
Citation: WANG Xiao-jing, ZHANG Hui, LI Lian-you, FU Wei-ling, ZHANG Yang. Research progress and application of Raman spectroscopy in virus detection[J]. Chinese Journal of General Practice, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109

拉曼光谱在病毒检测中的应用及研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002109
基金项目: 

国家重点研发计划“精准医学研究” 2017YFC0909602

国家自然科学基金项目 81701183

国家自然科学基金项目 81430054

西南医院智慧医疗重点项目 SWH2016ZDCX4204

西南医院智慧医疗重点项目 SWH2017ZDCX4210

详细信息
    通讯作者:

    张阳, E-mail: millen001@163.com

  • 中图分类号: R511  R446

Research progress and application of Raman spectroscopy in virus detection

  • 摘要: 病毒可以导致人类患有传染性疾病,常规检测病毒的方法步骤繁琐、灵敏性较低、耗时耗材,迫切需要一种新型简便、快速、灵敏性较高的病毒检测方法。近年来,表面增强拉曼光谱技术(surface enhanced Raman spectroscopy, SERS)因其指纹图谱性、高分辨率、无损检测等独特优势,在生物医学领域展现出巨大的应用前景。其中,拉曼光谱在病原微生物快速鉴定及耐药性分析方面有望获得颠覆性的技术革新。本文聚焦于拉曼光谱在病毒检测中的研究进展,从应用拉曼光谱的技术方法入手,重点阐述了基于SERS的技术在寨卡和登革热病毒、流感病毒、M13噬菌体、人类免疫缺陷病毒、禽流感病毒、呼吸道合胞病毒及慢性乙型肝炎病毒等具体实例的应用,并展望了SERS技术在临床检验中的应用前景。本文通过综述SERS检测技术在不同病毒中的应用研究,有望为临床科研工作者研发新型快速、简便、灵敏的病毒检测方法提供新思路,为临床实验室病毒早期检测提供一种新的技术手段。

     

  • [1] LION T. Adenovirus infections in immunocompetent and immunocompromised patients[J]. Clin Microbiol Rev, 2014, 27(3): 441-462. doi: 10.1128/CMR.00116-13
    [2] TRENTIN J, YABE Y, TAYLOR G. The quest for human cancer viruses: A new approach to an old problem reveals cancer induction in hamsters by human adenovirus[J]. Science, 1962, 137(3533): 835-841. doi: 10.1126/science.137.3533.835
    [3] LI Y Q, ZHU B, LI Y, et al. A synergistic capture strategy for enhanced detection and elimination of bacteria[J]. Angew Chem Int Ed Engl, 2014, 53(23): 5837-5841. doi: 10.1002/anie.201310135
    [4] YANIK A, HUANG M, KAMOHARA O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media[J]. Nano Lett, 2010, 10(12): 4962-4969. doi: 10.1021/nl103025u
    [5] LIN C, LIU Y, YAN H. Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing[J]. Nano Lett, 2007, 7(2): 507-512. doi: 10.1021/nl062998n
    [6] ISON M. Emerging infections: Adenovirus iInfections in transplant recipients[J]. Clin Infect Dis, 2006, 43(3): 331-339. doi: 10.1086/505498
    [7] LION T, BAUMGARTINGER R, WATZINGER F, et al. Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease[J]. Blood, 2003, 102(3): 1114-1120. doi: 10.1182/blood-2002-07-2152
    [8] ECHAVARRIA M, FORMAN M, TOL M, et al. Prediction of severe disseminated adenovirus infection by serum PCR[J]. Lancet, 2001, 358(9279): 384-385. doi: 10.1016/S0140-6736(01)05580-5
    [9] 李睿, 周金池, 卢存福. 拉曼光谱在生物学领域的应用[J]. 生物技术通报, 2009(12): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT200912016.htm
    [10] 贾潇潇, 李晶, 秦天, 等. 表面增强拉曼光谱技术在微生物鉴定中的应用进展[J]. 生物工程学报, 2015, 31(5): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU201505002.htm
    [11] FERREIRA J, COSTA S. Electronic excited-state behavior of rhodamine 3B in AOT reverse micelles sensing contact ion pair to solvent separated ion pair interconversion[J]. J Phys Chem B, 2010, 114(32): 10417-10426. doi: 10.1021/jp100571t
    [12] SONG J, DUAN B, WANG C, et al. SERS-encoded nanogapped plasmonic nanoparticles: Growth of metallic nanoshell by templating redox-active polymer brushes[J]. J Am Chem Soc, 2014, 136(19): 6838-6841. doi: 10.1021/ja502024d
    [13] SCHLÜCKER S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angew Chem Int Ed Engl, 2014, 53(19): 4756-4795. doi: 10.1002/anie.201205748
    [14] SÁNCHEZ-PURRÀ M, CARRÉ-CAMPS M, PUIG H, et al. Surface-enhanced Raman spectroscopy-based sandwich immunoassays for multiplexed detection of Zika and Dengue viral biomarkers[J]. ACS Infec Dis, 2017, 3(10): 767-776. doi: 10.1021/acsinfecdis.7b00110
    [15] GUZMAN M G, HALSTEAD S B, ARTSOB H, et al. Dengue: A continuing global threat[J]. Nat Rev Microbiol, 2010, 8(12 Suppl): S7-S16. http://europepmc.org/abstract/MED/21079655
    [16] LESSLER J, CHAISSON L H, KUCIRKA L M, et al. Assessing the global threat from Zika virus[J]. Science, 2016, 353(6300): 8160. doi: 10.1126/science.aaf8160
    [17] KOH M T, EG K P, LOH S S. Hospitalised malaysian children with pandemic (H1N1) 2009 influenza: Clinical characteristics, risk factors for severe disease and comparison with the 2002-2007 seasonal influenza[J]. Singapore Med J, 2016, 57(2): 81-86. doi: 10.11622/smedj.2015146
    [18] PARK M, WU P, GOLDSTEIN E, et al. Influenza-associated excess mortality in south korea[J]. Am J Prev Med, 2016, 50(4): e111-e119. doi: 10.1016/j.amepre.2015.09.028
    [19] THOMPSON W W, SHAY D K, WEINTRAUB E, et al. Mortality associated with influenza and respiratory syncytial virus in the United States[J]. JAMA, 2003, 289(2): 179-186. doi: 10.1001/jama.289.2.179
    [20] LIM J Y, NAM J S, SHIN H, et al. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis[J]. In Anal Chem, 2019, 91(9): 5677-5684. doi: 10.1021/acs.analchem.8b05533
    [21] KUKUSHKIN V I, IVANOV N M, NOVOSELTSEVA A A, et al. Highly sensitive detection of influenza virus with SERS aptasensor[J]. PLoS One, 2019, 14(4): e0216247. doi: 10.1371/journal.pone.0216247
    [22] MOON J S, KIM W G, SHIN D M, et al. Bioinspired M-13 bacteriophage-based photonic nose for differential cell recognition[J]. Chem Sci, 2017, 8(2): 921-927. doi: 10.1039/C6SC02021F
    [23] LEE J H, XU P W, DOMAILLE D, et al. M13 Bacteriophage as materials for amplified surface enhanced Raman scattering protein sensing[J]. Advanced Functional Materials, 2014, 24(14): 2079-2084. doi: 10.1002/adfm.201303331
    [24] WANG J, YANG M, ZHU Y, et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds[J]. Adv Mater, 2014, 26(29): 4961-4966. doi: 10.1002/adma.201400154
    [25] JONG S M, WON GEUN K, CHUNTAE K, et al. M-13 bacteriophage based structural color sensor for detecting antibiotics[J]. Sens Actuators B-chem, 2017, 240: 757-762. doi: 10.1016/j.snb.2016.09.050
    [26] KOH E H, MUN C, KIM C, et al. M13 Bacteriophage/Silver nanowire surface-enhanced Raman scattering sensor for sensitive and selective pesticide detection[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10388-10397. doi: 10.1021/acsami.8b01470
    [27] PARK S G, MUN C, LEE M, et al. 3D Hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors[J]. Adv Mater, 2015, 27(29): 4290-4295. doi: 10.1002/adma.201501587
    [28] WEISS R. How does HIV cause AIDS?[J]. Science, 1993, 260(5112): 1273-1279. doi: 10.1126/science.8493571
    [29] LEE J H, KIM B C, OH B K, et al. Rapid and sensitive determination of HIV-1 virus based on surface enhanced Raman spectroscopy[J]. J Biomed Nanotechnol, 2015, 11(12): 2223-2230. doi: 10.1166/jbn.2015.2117
    [30] YUAN Z, ZHU W, CHEN Y, et al. Serological surveillance of H5 and H9 avian influenza a viral infections among pigs in Southern China[J]. Microb Pathog, 2013, 64: 39-42. doi: 10.1016/j.micpath.2013.08.001
    [31] PEPIN K M, WANG J, WEBB C T, et al. Multiannual patterns of influenza a transmission in Chinese live bird market systems[J]. Influenza Other Respir Viruses, 2013, 7(1): 97-107. doi: 10.1111/j.1750-2659.2012.00354.x
    [32] XIAO M, XIE K, DONG X, et al. Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips[J]. Anal Chim Acta, 2019, 11: 1053. http://www.onacademic.com/detail/journal_1000041580389299_b142.html
    [33] KILLIAN M L. Hemagglutination assay for the avian influenza Virus[J]. Avian Influenza Virus, 2008, 436: 47-52. doi: 10.1007/978-1-59745-279-3_7
    [34] STANG P, BRANDENBURG N, CARTER B. The economic burden of respiratory syncytial virus-associated bronchiolitis hospitalizations[J]. Arch Pediatr Adolesc Med, 2001, 155(1): 95-96. doi: 10.1001/archpedi.155.1.95
    [35] GÓMEZ R S, MORA J E, CORTÉS C M, et al. Respiratory syncytial virus detection in cells and clinical samples by using three new monoclonal antibodies[J]. J Med Virol, 2014, 86(7): 1256-1266. doi: 10.1002/jmv.23807
    [36] BONT L, VERSTEEGH J, SWELSEN W, et al. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity[J]. Pediatr Res, 2002, 52(3): 363-367. doi: 10.1203/00006450-200209000-00009
    [37] CHANG J, BRACIALE T J. Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract[J]. Nat Med, 2002, 8(1): 54-60. doi: 10.1038/nm0102-54
    [38] BRACIALE T J. Respiratory syncytial virus and T cells: Interplay between the virus and the host adaptive immune system[J]. Proc Am Thorac Soc, 2005, 2(2): 141-146. doi: 10.1513/pats.200503-022AW
    [39] JAYAGOPAL A, HALFPENNY K C, PEREZ J W, et al. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells[J]. J Am Chem Soc, 2010, 132(28): 9789-9796. doi: 10.1021/ja102585v
    [40] PEREZ J W, VARGIS E A, RUSS P K, et al. Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction[J]. Anal Biochem, 2011, 410(1): 141-148. doi: 10.1016/j.ab.2010.11.033
    [41] ZHAN L, ZHEN S J, WAN X Y, et al. A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus[J]. Talanta, 2016, 148: 308-312. doi: 10.1016/j.talanta.2015.10.081
    [42] LEONG J, LIN D, NGUYEN M H. Hepatitis B surface antigen escape mutations: Indications for initiation of antiviral therapy revisited[J]. World J Clin Cases, 2016, 4(3): 71-75. doi: 10.12998/wjcc.v4.i3.71
    [43] WEBER B. Recent developments in the diagnosis and monitoring of HBV infection and role of the genetic variability of the S gene[J]. Expert Rev Mol Diagn, 2005, 5(1): 75-91. doi: 10.1586/14737159.5.1.75
    [44] YANG L, SONG L W, FANG L L, et al. Evaluation of a novel chemiluminescent microplate enzyme immunoassay for hepatitis B surface antigen detection[J]. J Virol Methods, 2016, 228: 55-59. doi: 10.1016/j.jviromet.2015.11.013
    [45] LU Y, LIN Y, ZHENG Z, et al. Label free hepatitis B detection based on serum derivative surface enhanced Raman spectroscopy combined with multivariate analysis[J]. Biomed Opt Express, 2018, 9(10): 4755-4766. doi: 10.1364/BOE.9.004755
  • 加载中
计量
  • 文章访问数:  194
  • HTML全文浏览量:  124
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-21
  • 网络出版日期:  2022-02-15

目录

    /

    返回文章
    返回