留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺氧性肝损伤机制及其凝血因子水平变化的研究进展

王珍 张培莉 杨发满

王珍, 张培莉, 杨发满. 缺氧性肝损伤机制及其凝血因子水平变化的研究进展[J]. 中华全科医学, 2021, 19(10): 1733-1736. doi: 10.16766/j.cnki.issn.1674-4152.002154
引用本文: 王珍, 张培莉, 杨发满. 缺氧性肝损伤机制及其凝血因子水平变化的研究进展[J]. 中华全科医学, 2021, 19(10): 1733-1736. doi: 10.16766/j.cnki.issn.1674-4152.002154
WANG Zhen, ZHANG Pei-li, YANG Fa-man. Research progress on the mechanism of hypoxic liver injury and the changes of coagulation factor levels[J]. Chinese Journal of General Practice, 2021, 19(10): 1733-1736. doi: 10.16766/j.cnki.issn.1674-4152.002154
Citation: WANG Zhen, ZHANG Pei-li, YANG Fa-man. Research progress on the mechanism of hypoxic liver injury and the changes of coagulation factor levels[J]. Chinese Journal of General Practice, 2021, 19(10): 1733-1736. doi: 10.16766/j.cnki.issn.1674-4152.002154

缺氧性肝损伤机制及其凝血因子水平变化的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002154
基金项目: 

青海省卫生计生委重点科研项目 2018-wjzd-12

详细信息
    通讯作者:

    张培莉, E-mail: zplxn@sina.com

  • 中图分类号: R575

Research progress on the mechanism of hypoxic liver injury and the changes of coagulation factor levels

  • 摘要: 肝脏是机体合成凝血因子的主要器官,常氧的环境下肝功能受损后会影响凝血因子合成,导致出血等疾病发生。在周围环境缺氧(高海拔)、基础疾病(心源性、肺源性、血液系统疾病)存在以及加重均会导致肝脏组织缺氧。先前学者对“缺氧性肝病”的定义是由于肝脏供血不足(前负荷衰竭)或严重淤血(后负荷衰竭)引起肝细胞缺血缺氧甚至坏死, 即肝脏的供氧量不能满足其需氧量时, 导致肝脏中央区细胞的坏死。在肝源性疾病来看,目前部分研究认为非酒精性脂肪肝病、酒精性肝损伤、肝纤维化、肝硬化、缺血-再灌注性肝损伤等肝脏疾病均存在肝脏组织缺氧。这些疾病的共同特征首先表现在肝脏本身疾病,其次是由于代谢供需不平衡而导致的肝脏组织缺氧。机体在慢性缺氧下会出现凝血因子水平变化,如高海拔地区居民长期生活在低氧环境下,机体代偿性出现血细胞计数变化,如红细胞及血红蛋白水平升高,导致血液黏稠、血液黏滞,高凝状态下血栓或者微血栓形成,出现凝血酶原时间、部分活化凝血酶原时间的延长以及继发性部分凝血因子表达水平的异常。在临床工作中对肝病患者凝血功能的测定尤为重要,上述这些肝源疾病是否会对凝血因子表达水平产生影响?本文对各种肝源性疾病出现肝脏组织缺氧性肝损伤的发生机制以及相关缺氧性肝损伤后凝血因子变化的水平进行描述。

     

  • [1] 张彬, 苏芳, 叶柳青. 肝硬化患者生化、血小板参数及凝血指标与肝功能Child-Pugh分级间的相关性研究[J]. 现代实用医学, 2016, 28(8): 1043-1044. doi: 10.3969/j.issn.1671-0800.2016.08.034
    [2] 解敬伟, 田玉晶, 谢丽娟, 等. 肝硬化门静脉血栓患者血浆纤维蛋白原、D-二聚体水平及其对病情及预后的价值研究[J]. 川北医学院学报, 2020, 35(3): 424-427. doi: 10.3969/j.issn.1005-3697.2020.03.017
    [3] WANG Z, LIU H, DOU M, et al. The quality changes in fresh frozen plasma of the blood donors at high altitude[J]. PLoS One, 2017, 12(4): e0176390. doi: 10.1371/journal.pone.0176390
    [4] HETTIARACHCHI G K, KATNENI U K, HUNT R C, et al. Translational and transcriptional responses in human primary hepatocytes under hypoxia[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(6): G720-G734. doi: 10.1152/ajpgi.00331.2018
    [5] ESTES C, RAZAVI H, LOOMBA R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology, 2018, 67(1): 123-133. doi: 10.1002/hep.29466
    [6] MYLONIS I, SIMOS G, PARASKEVA E. Hypoxia-inducible factors and the regulation of lipid metabolism[J]. Cells, 2019, 8(3): 214. doi: 10.3390/cells8030214
    [7] SCHLEICHER J, TOKARSKI C, MARBACH E, et al. Zonation of hepatic fatty acid metabolism - The diversity of its regulation and the benefit of modeling[J]. Biochim Biophys Acta, 2015, 1851(5): 641-656. doi: 10.1016/j.bbalip.2015.02.004
    [8] GONZALEZ F J, XIE C, JIANG C. The role of hypoxia-inducible factors in metabolic diseases[J]. Nat Rev Endocrinol, 2018, 15(1): 21-32. http://www.onacademic.com/detail/journal_1000040865042510_0708.html
    [9] CHEN J, CHEN J, FU H, et al. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway[J]. Am J Physiol Endocrinol Metab, 2019, 317(4): E710-E722. doi: 10.1152/ajpendo.00052.2019
    [10] ARON-WISNEWSKY J, CLEMENT K, PÉPIN J L. Nonalcoholic fatty liver disease and obstructive sleep apnea[J]. Metabolism, 2016, 65(8): 1124-1135. doi: 10.1016/j.metabol.2016.05.004
    [11] KARGILI A, CIPIL H, KARAKURT F, et al. Hemostatic alterations in fatty liver disease[J]. Blood Coagul Fibrinolysis, 2010, 21(4): 325-327. doi: 10.1097/MBC.0b013e328337b3f8
    [12] LALLUKKA S, LUUKKONEN P K, ZHOU Y, et al. Obesity/insulin resistance rather than liver fat increases coagulation factor activities and expression in humans[J]. Thromb Haemost, 2017, 117(2): 286-294. doi: 10.1160/TH16-09-0716
    [13] POTZE W, SIDDIQUI M S, BOYETT S L, et al. Preserved hemostatic status in patients with non-alcoholic fatty liver disease[J]. J Hepatol, 2016, 65(5): 980-987. doi: 10.1016/j.jhep.2016.06.001
    [14] SATISHCHANDRAN A, AMBADE A, RAO S, et al. MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease[J]. Gastroenterology, 2018, 154(1): 238-252. e7. doi: 10.1053/j.gastro.2017.09.022
    [15] HORIE Y, EBINUMA H, KIKUCHI M, et al. Current status of alcoholic liver disease in Japan and therapeutic strategy[J]. Nihon Arukoru Yakubutsu Igakkai Zasshi, 2016, 51(2): 71-90. http://www.ncbi.nlm.nih.gov/pubmed/30462383
    [16] BEIER J I, LUYENDYK J P, GUO L, et al. Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice[J]. Hepatology, 2009, 49(5): 1545-1553. doi: 10.1002/hep.22847
    [17] CENI E, MELLO T, POLVANI S, et al. The orphan nuclear receptor COUP-TFⅡ coordinates hypoxia-independent proangiogenic responses in hepatic stellate cells[J]. J Hepatol, 2017, 66(4): 754-764. doi: 10.1016/j.jhep.2016.11.003
    [18] SIMONETTO D A, YANG H Y, YIN M, et al. Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces[J]. Hepatology, 2015, 61(2): 648-659. doi: 10.1002/hep.27387
    [19] LEE K C, HSU W F, HSIEH Y C, et al. Dabigatran reduces liver fibrosis in thioacetamide-injured rats[J]. Dig Dis Sci, 2019, 64(1): 102-112. doi: 10.1007/s10620-018-5311-1
    [20] TRIPODI A, MANNUCCI P M. The coagulopathy of chronic liver disease[J]. N Engl J Med, 2011, 365(2): 147-156. doi: 10.1056/NEJMra1011170
    [21] 马少康. 不同Child-Pugh分级肝硬化患者凝血功能、血小板参数、网织红细胞参数的变化研究[J]. 中国现代药物应用, 2020, 14(7): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYY202007015.htm
    [22] CALDWELL S, CARLINI L E. Coagulation homeostasis in liver disease[J]. Clin Liver Dis (Hoboken), 2020, 16(4): 137-141. doi: 10.1002/cld.935
    [23] LLOVET J M, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616. doi: 10.1038/s41571-018-0073-4
    [24] BANGOURA G, LIU Z S, QIAN Q, et al. Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma[J]. World J Gastroenterol, 2007, 13(23): 3176-3182. doi: 10.3748/wjg.v13.i23.3176
    [25] YUEN V W, WONG C C. Hypoxia-inducible factors and innate immunity in liver cancer[J]. J Clin Invest, 2020, 130(10): 5052-5062. doi: 10.1172/JCI137553
    [26] CHEN K D, HUANG K T, TSAI M C, et al. Coagulation factor Ⅶ and malignant progression of hepatocellular carcinoma[J]. Cell Death Dis, 2016, 7(2): e2110. doi: 10.1038/cddis.2015.395
    [27] CAVERSACCIO N I, REINA CARO M D, PRINCE R, et al. Alternatively spliced tissue factor levels are elevated in the plasma of patients with chronic liver diseases[J]. Eur J Gastroenterol Hepatol, 2018, 30(12): 1470-1475. doi: 10.1097/MEG.0000000000001236
    [28] IMATAKI O, ARAI T, UEMURA M. Acquired inhibitors to multiple coagulation factors (Ⅴ, Ⅸ, and Ⅻ) identified in a unique patient with hepatocellular carcinoma[J]. Intern Med, 2017, 56(10): 1203-1206. doi: 10.2169/internalmedicine.56.7845
    [29] KATO T, TAMURA S, TEKIN A, et al. Use of microwave coagulation therapy in liver transplant candidates with hepatocellular carcinoma: A preliminary report[J]. Transplant Proc, 2001, 33(1-2): 1469. doi: 10.1016/S0041-1345(00)02555-0
    [30] 王兰, 王红梅, 张建龙, 等. 大鼠肝缺血再灌注损伤肝核因子-κB、髓过氧化物酶、组织因子与凝血功能紊乱[J]. 中华肝脏病杂志, 2005, 13(8): 607-608. doi: 10.3760/j.issn:1007-3418.2005.08.016
    [31] DHAR A, SADIQ F, ANSTEE Q M, et al. Thrombin and factor Xa link the coagulation system with liver fibrosis[J]. BMC Gastroenterol, 2018, 18(1): 60. doi: 10.1186/s12876-018-0789-8
  • 加载中
计量
  • 文章访问数:  267
  • HTML全文浏览量:  57
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 网络出版日期:  2022-02-15

目录

    /

    返回文章
    返回