留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MicroRNA在甲状腺癌中的研究进展

李勇 郭敏 康英英

李勇, 郭敏, 康英英. MicroRNA在甲状腺癌中的研究进展[J]. 中华全科医学, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337
引用本文: 李勇, 郭敏, 康英英. MicroRNA在甲状腺癌中的研究进展[J]. 中华全科医学, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337
LI Yong, GUO Min, KANG Ying-ying. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337
Citation: LI Yong, GUO Min, KANG Ying-ying. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337

MicroRNA在甲状腺癌中的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002337
基金项目: 

黑龙江省卫生计生委科研课题 2018096

黑龙江省自然科学基金项目 LH2019H017

详细信息
    通讯作者:

    康英英,E-mail:765782420@qq.com

  • 中图分类号: R736.1

Research progress of microRNA in thyroid cancer

  • 摘要: 微小RNAs(MicroRNAs, miRNAs)是一类短的广泛存在于生物体内,可以调控多种病理及生理过程的单链非编码RNA。研究发现其在组织以外的血液、尿液、外泌体等中也存在差异表达。随着检测技术的飞速发展、研究方法的不断改进以及研究人员操作技能的不断提升,miRNA因其稳定的分子结构以及丰富的生物学功能而进入人们的视线,其在炎症发生、免疫调节、氧化应激、纤维化、信息传递、病毒播散及肿瘤恶性进展等生命进程中的差异表达以及具体的调控机制正在不断被发掘及证实,尤其在甲状腺癌的发生、侵袭、转移及耐药中发挥着重要的调控作用, 提示其有望成为甲状腺癌精准诊疗及预后评估的新指标。且对于未知功能的miRNAs以及其在不同类型的甲状腺癌中的特异性表达的研究不仅对于甲状腺癌不同病理类型的诊断、鉴别以及治疗具有重要意义,还有助于动态观察甲状腺癌患者的病情演变。而对于不同甲状腺癌类型相关的特异性miRNA在前者进展中具体调控机制有待进一步的研究。本文对miRNA的研究进程、生物学功能以及其在不同类型的甲状腺癌中的近期研究进行汇总,旨在为甲状腺癌的诊治提供参考,丰富甲状腺癌患者的诊疗策略以及进一步提高甲状腺癌患者的生存质量。

     

  • [1] MILLER K D, NOGUEIRA L, MARIOTTO A B, et al. Cancer treatment and survi vorship statistics, 2019[J]. CA Cancer J Clin, 2019, 69(5): 363-385. doi: 10.3322/caac.21565
    [2] YIN D D, LI S S, SHU Q Y, et al. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds[J]. Gene, 2018, 666(8): 72-82. http://smartsearch.nstl.gov.cn/paper_detail.html?id=733c382f4675b54b41e18f61deecf675
    [3] ZEALY R W, WRENN S P, DAVILA S, et al. microRNA-binding pro-teins: Specificity and function[J]. Wiley Interdiscip Rev RNA, 2017, 8(5): e1414. doi: 10.1002/wrna.1414
    [4] 马瀚博, 李怀芳. MicroRNA在卵巢癌早期诊断及预后中应用的研究进展[J]. 中华全科医学, 2018, 16(5): 826-829. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201805043.htm
    [5] COUZIGOU J M, LAURESSERGUES D, ANDRE O, et al. Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis[J]. Cell Host Microbe, 2017, 21(1): 106-112. doi: 10.1016/j.chom.2016.12.001
    [6] CHEN P, CHEN J, HE L, et al. Identification of circRNA-miRNA-mRNA regulatory network in bladder cancer by integrated analysis[J]. Urologia Internationalis, 2021, 105(7-8): 705-715. doi: 10.1159/000512066
    [7] WANG X, DONG J, LI X, et al. CPSF4 regulates circRNA formation and microRNA mediated gene silencing in hepatocellular carcino-ma[J]. Oncogene, 2021, 40(25): 4338-4351. doi: 10.1038/s41388-021-01867-6
    [8] 王艺霏, 敖翔, 刘英, 等. 线粒体miRNA及其生物学功能[J]. 中国细胞生物学学报, 2018, 40(7): 1247-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ201807023.htm
    [9] BARTEL D P. Metazoan microRNAs[J]. Cell, 2018, 173(1): 20-51. doi: 10.1016/j.cell.2018.03.006
    [10] GHOSH U, ADHYA S. Posttranscriptional regulation of cyclin D1 by ARE-binding proteins AUF1 and HuR in cycling myoblasts[J]. J Biosci, 2018, 43(4): 685-691. doi: 10.1007/s12038-018-9788-8
    [11] SHEHATA R H, ABDELMONEIM S S, OSMAN O A, et al. Deregulation of miR-34a and Its chaperon hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients[J]. Asian Pac J Cancer Prev, 2017, 18(9): 2395-2401. http://europepmc.org/articles/PMC5720642?pdf=render
    [12] MANEECHOTESUWAN K. Role of microRNA in severe asthma[J]. Respir Investig, 2019, 57(1): 9-19. doi: 10.1016/j.resinv.2018.10.005
    [13] SHI Y, DAI S, QIU C, et al. MicroRNA-219a-5p suppresses intestinal in flammation through inhibiting Th1/Th17-mediated immune responses in in flammatory bowel disease[J]. Mucosal Immunol, 2020, 13(2): 303-312. doi: 10.1038/s41385-019-0216-7
    [14] HU Y, DU G, LI G, et al. The miR-122 inhibition alleviates lipid accumu lation and inflammation in NAFLD cell model[J]. Arch Physiol Bio chem, 2021, 127(5): 385-389. doi: 10.1080/13813455.2019.1640744
    [15] WAN X, CHEN S, FANG Y, et al. Mesenchymal stem cell derived extracellu lar vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmo nary fibrosis[J]. J Cell Physiol, 2020, 235(11): 8613-8625. doi: 10.1002/jcp.29706
    [16] ENGEDAL N, ZEROVNIK E, RUDOV A, et al. From oxidative stress damage to pathways, networks, and autophagy via microRNAs[J]. Oxid Med Cell Lon gev, 2018, 12(4): 4968321. http://downloads.hindawi.com/journals/omcl/2018/4968321.pdf
    [17] BIGGAR K K, STOREY K B. Functional impact of microRNA regulation in models of extreme stress adaptation[J]. J Mol Cell Biol, 2018, 10(2): 93-101. doi: 10.1093/jmcb/mjx053
    [18] LI Y, ZHANG H, DU Y, et al. Extracellular vesicle microRNA cargoes from intermittent hypoxia-exposed cardiomyocytes and their effect on endothe lium[J]. Biochem Biophys Res Commun, 2021, 548(9): 182-188. http://www.researchgate.net/publication/347640623_Extracellular_vesicle_microRNA_cargoes_from_intermittent_hypoxia-exposed_cardiomyocytes_and_their_effect_on_endothelium
    [19] CHAMORRO-JORGANES A, ANWAR M, EMANUELI C. Changes in high-density lipo protein microRNA might create a lasting memory of high-fat diet[J]. Cardiovasc Res, 2020, 116(7): 1237-1239. doi: 10.1093/cvr/cvz334
    [20] 周丽杰, 金焰, 于景翠. 外泌体microRNA在肿瘤相关成纤维细胞与肿瘤细胞间交互影响中作用研究进展[J]. 中华实用诊断与治疗杂志, 2020, 34(12): 1282-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202012024.htm
    [21] RUHRMANN S, EWING E, PIKET E, et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associ-ates with lower miRNA-21 levels and concomitant up regulation of its target genes[J]. Mult Scler, 2018, 24(10): 1288-1300. doi: 10.1177/1352458517721356
    [22] 程燕, 何启胜. 血清miR-451a、miR-25-3p、GAS8-AS1联合检测用于早期甲状腺乳头状癌的诊断[J]. 国际内分泌代谢杂志, 2020, 40(5): 300-303.
    [23] JIANG K, LI G, CHEN W, et al. Plasma exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas[J]. Onco Targets Ther, 2020, 13(2): 1311-1319. http://www.researchgate.net/publication/339215309_Plasma_Exosomal_miR-146b-5p_and_miR-222-3p_are_Potential_Biomarkers_for_Lymph_Node_Metastasis_in_Papillary_Thyroid_Carcinomas/download
    [24] YE W, DENG X, FAN Y. Exosomal miRNA423-5p mediated oncogene activity in papillary thyroid carcinoma: A potential diagnostic and biological tar get for cancer therapy[J]. Neoplasma, 2019, 66(4): 516-523. doi: 10.4149/neo_2018_180824N643
    [25] 刘静, 陈红星, 许密, 等. 术后引流液外泌体hsa-miR-609在甲状腺乳头状癌发生发展中的作用及其机制探讨[J]. 岭南现代临床外科, 2019, 19(2): 150-153. doi: 10.3969/j.issn.1009-976X.2019.02.006
    [26] WANG Y, CEN A, YANG Y, et al. miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis[J]. Mol Ther Nucleic Acids, 2021, 24(2): 610-621. http://www.sciencedirect.com/science/article/pii/S2162253121000627
    [27] 张建祥, 马艳梅, 张素琴, 等. 血浆微小RNA-21鉴别甲状腺滤泡癌与乳头状甲状腺癌[J]. 中华实验外科杂志, 2018, 35(10): 1921-1923. doi: 10.3760/cma.j.issn.1001-9030.2018.10.043
    [28] MA W, ZHAO X, LIANG L, et al. miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4[J]. Oncotarget, 2017, 8(17): 28028-28041. doi: 10.18632/oncotarget.15885
    [29] 李莹, 刁为英, 王彩霞, 等. 甲状腺滤泡癌中miR-133的表达及其诊断意义[J]. 临床与实验病理学杂志, 2020, 36(7): 779-783. https://www.cnki.com.cn/Article/CJFDTOTAL-LSBL202007007.htm
    [30] SASANAKIETKUL T, MURTHA T D, JAVID M, et al. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer[J]. Mol Cell Endo crinol, 2018, 469(5): 23-37. http://www.onacademic.com/detail/journal_1000039916680010_d901.html
    [31] ZHANG X, DONG S, JIA Q, et al. The microRNA in ventricular remodeling: The miR-30 family[J]. Biosci Rep, 2019, 39(8): BSR20190788. doi: 10.1042/BSR20190788
    [32] LI X F, SHEN W Z, JIN X, et al. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations[J]. Sci Rep, 2020, 10(1): 11236. doi: 10.1038/s41598-020-67908-4
    [33] ZHANG X, LIU L, DENG X, et al. MicroRNA 483-3p targets pard3 to potentiate TGF-beta1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells[J]. Oncogene, 2019, 38(5): 699-715. doi: 10.1038/s41388-018-0447-1
    [34] MASOOD N, BASHARAT Z, KHAN T, et al. Entangling relation of micro RNA-let7, miRNA-200 and miRNA-125 with various cancers[J]. Pathol Oncol Res, 2017, 23(4): 707-715. doi: 10.1007/s12253-016-0184-0
    [35] BU Q, YOU F, PAN G, et al. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD[J]. Biomed Pharma-cother, 2017, 88(4): 443-448. http://www.onacademic.com/detail/journal_1000039818065310_1912.html
    [36] REDA E S S, CRISTANTE J, GUYON L, et al. MicroRNA therapeutics in cancer: Current advances and challenges[J]. Cancers (Basel), 2021, 13(11): 2680. doi: 10.3390/cancers13112680
    [37] TITOV S E, IVANOV M K, DEMENKOV P S, et al. Combined quantitation of HMGA2 mRNA, microRNAs, and mitochondrial-DNA content enables the identifi-cation and typing of thyroid tumors in fine-needle aspiration smears[J]. Bmc Cancer, 2019, 19(1): 1010. doi: 10.1186/s12885-019-6154-7
    [38] ROMEO P, COLOMBO C, GRANATA R, et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer pa-tients[J]. Endocr Relat Cancer, 2018, 25(3): 217-231. doi: 10.1530/ERC-17-0389
    [39] AUBERT S, BERDELOU A, GNEMMI V, et al. Large sporadic thyroid medullary carcinomas: Predictive factors for lymph node involvement[J]. Virchows Arch, 2018, 472(3): 461-468. doi: 10.1007/s00428-018-2303-7
    [40] JOO L, WEISS J, GILL A J, et al. RET kinase-regulated microRNA-153-3p improves therapeutic efficacy in medullary thyroid carcino-ma[J]. Thyroid, 2019, 29(6): 830-844. doi: 10.1089/thy.2018.0525
    [41] ZAHEER U, FAHEEM M, QADRI I, et al. Expression profile of microRNA: An emerging hallmark of cancer[J]. Curr Pharm Des, 2019, 25(6): 642-653. doi: 10.2174/1386207322666190325122821
    [42] 李德宇, 李娜, 李文亮, 等. miR-130b与碘难治性分化型甲状腺癌的关系研究[J]. 实用药物与临床, 2019, 22(4): 368-373. https://www.cnki.com.cn/Article/CJFDTOTAL-LYLC201904007.htm
  • 加载中
计量
  • 文章访问数:  393
  • HTML全文浏览量:  264
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 网络出版日期:  2022-03-04

目录

    /

    返回文章
    返回