留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞衍生物在心脏损伤修复方面的研究进展及应用展望

李德民 路永政 秦臻 徐彦彦 张力 张金盈 唐俊楠

李德民, 路永政, 秦臻, 徐彦彦, 张力, 张金盈, 唐俊楠. 细胞衍生物在心脏损伤修复方面的研究进展及应用展望[J]. 中华全科医学, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379
引用本文: 李德民, 路永政, 秦臻, 徐彦彦, 张力, 张金盈, 唐俊楠. 细胞衍生物在心脏损伤修复方面的研究进展及应用展望[J]. 中华全科医学, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379
LI De-min, LU Yong-zheng, QIN Zhen, XU Yan-yan, ZHANG Li, ZHANG Jin-ying, TANG Jun-nan. Cell derivatives in heart injury repair progress and application prospects[J]. Chinese Journal of General Practice, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379
Citation: LI De-min, LU Yong-zheng, QIN Zhen, XU Yan-yan, ZHANG Li, ZHANG Jin-ying, TANG Jun-nan. Cell derivatives in heart injury repair progress and application prospects[J]. Chinese Journal of General Practice, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379

细胞衍生物在心脏损伤修复方面的研究进展及应用展望

doi: 10.16766/j.cnki.issn.1674-4152.002379
基金项目: 

国家自然科学基金青年基金项目 81800267

河南省自然科学基金-优秀青年基金项目 202300410362

详细信息
    通讯作者:

    唐俊楠,E-mail:fcctangjn@zzu.edu.cn

  • 中图分类号: R542.22  R541

Cell derivatives in heart injury repair progress and application prospects

  • 摘要: 急性心肌梗死(AMI)仍然是导致冠心病患者死亡的首要原因。需要针对AMI后心脏的损伤修复研究出新的治疗策略,最新的研究表明细胞衍生物在心脏损伤修复方面展现出巨大的潜力,是当今医学研究的热点。细胞衍生物包括细胞外囊泡(EVs)、非编码RNA、生长因子等。文章结合最新的研究进展,展现了心肌细胞、内皮细胞、免疫细胞衍生的EVs在AMI后的变化以及作用;总结了临床前研究以及临床研究中微小核糖核酸、长链非编码核糖核酸、环状核糖核酸在AMI后的变化以及作用;重点介绍了血管内皮生长因子以及成纤维细胞生长因子在AMI后的变化及作用;最后从临床应用角度总结了EVs、非编码RNA、生长因子作为诊断和预测临床疾病进展的生物标志物相关的研究,以及利用这些细胞衍生物作为AMI治疗手段的研究。总之,细胞衍生物在心脏损伤修复方面有非常大的潜力,值得深入研究。

     

  • [1] BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke statistics-2019 update: A report from the american heart association[J]. Circulation, 2019, 139(10): e56-e528.
    [2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9): 833-854. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm

    The Writing Committee of the Report on Cardiovascular Health and Diseases. Report on cardiovascular health and diseases in China 2019: An updated summary[J]. Chinese Circulation Journal, 2020, 35(9): 833-854 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm
    [3] GULATI R, BEHFAR A, NARULA J, et al. Acute myocardial infarction in young individuals[J]. Mayo Clin Proc, 2020, 95(1): 136-156. doi: 10.1016/j.mayocp.2019.05.001
    [4] PEET C, IVETIC A, BROMAGE D I, et al. Cardiac monocytes and macrophages after myocardial infarction[J]. Cardiovasc Res, 2020, 116(6): 1101-1112. doi: 10.1093/cvr/cvz336
    [5] YU Y, LIU H, YANG D, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression[J]. Pharmacol Res, 2019, 146(1): 104315.
    [6] CHEN P, WANG L, FAN X, et al. Targeted delivery of extracellular vesicles in heart injury[J]. Theranostics, 2021, 11(5): 2263-2277. doi: 10.7150/thno.51571
    [7] YANG Y, LI Y, CHEN X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med(Berl), 2016, 94(6): 711-724.
    [8] YU X, DENG L, WANG D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes[J]. J Mol Cell Cardiol, 2012, 53(6): 848-857. doi: 10.1016/j.yjmcc.2012.10.002
    [9] WU T, LENG Q, TIAN L. The microRNA-210/Casp8ap2 axis alleviates hypoxia-Induced myocardial injury by regulating apoptosis and autophagy[J]. Cytogenet Genome Res, 2021, 161(3-4): 132-142. doi: 10.1159/000512254
    [10] BOULANGER C M, LOYER X, RAUTOU P, et al. Extracellular vesicles in coronary artery disease[J]. Nat Rev Cardiol, 2017, 14(5): 259-272. doi: 10.1038/nrcardio.2017.7
    [11] ZHU J, YAO K, GUO J, et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway[J]. J Cell Mol Med, 2017, 21(11): 2884-2895. doi: 10.1111/jcmm.13201
    [12] XIONG Y Y, GONG Z T, TANG R J, et al. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction[J]. Theranostics, 2021, 11(3): 1046-1058. doi: 10.7150/thno.53326
    [13] MUSHTAQ I, ISHTIAQ A, ALI T, et al. An overview of non-coding RNAs and cardiovascular system[J]. Adv Exp Med Biol, 2020, 1229: 3-45.
    [14] ZHOU S, JIN J, WANG J, et al. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges[J]. Acta Pharmacol Sin, 2018, 39(7): 1073-1084. doi: 10.1038/aps.2018.30
    [15] LIU X, TONG Z, CHEN K, et al. The role of miRNA-132 against apoptosis and oxidative stress in heart failure[J]. Biomed Res Int, 2018: 3452748. DOI: 10.1155/2018/3452748.
    [16] GUO Y, LUO F, LIU Q, et al. Regulatory non-coding RNAs in acute myocardial infarction[J]. J Cell Mol Med, 2017, 21(5): 1013-1023. doi: 10.1111/jcmm.13032
    [17] LI M, WANG Y F, YANG X C, et al. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction[J]. Med Sci Monit, 2018, 24: 5064-5070. doi: 10.12659/MSM.909348
    [18] LI L, CONG Y, GAO X, et al. Differential expression profiles of long non-coding RNAs as potential biomarkers for the early diagnosis of acute myocardial infarction[J]. Oncotarget, 2017, 8(51): 88613-88621. doi: 10.18632/oncotarget.20101
    [19] GARIKIPATI V, VERMA S K, CHENG Z, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun, 2019, 10(1): 4317. doi: 10.1038/s41467-019-11777-7
    [20] ZOU J, FEI Q, XIAO H, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy[J]. J Cell Physiol, 2019, 234(10): 17690-17703. doi: 10.1002/jcp.28395
    [21] NIU J, HAN X, QI H, et al. Correlation between vascular endothelial growth factor and long-term prognosis in patients with acute myocardial infarction[J]. Exp Ther Med, 2016, 12(1): 475-479. doi: 10.3892/etm.2016.3286
    [22] REN Z, XIAO W, ZENG Y, et al. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux[J]. Int J Mol Med, 2019, 43(3): 1321-1330.
    [23] THORSEN I S, GORANSSON L G, UELAND T, et al. The relationship between fibroblast growth factor 23 (FGF23) and cardiac MRI findings following primary PCI in patients with acute first time STEMI[J]. Int J Cardiol Heart Vasc, 2021, 33: 100727.
    [24] SAHOO S, ADAMIAK M, MATHIYALAGAN P, et al. Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases roadmap to the clinic[J]. Circulation, 2021, 143(14): 1426-1449. doi: 10.1161/CIRCULATIONAHA.120.049254
    [25] LIAO H, MENG L, YU X, et al. Increased circulating erythrocyte-derived microparticles in patients with acute coronary syndromes[J]. Biomark Med, 2021, 15(10): 741-751. doi: 10.2217/bmm-2021-0141
    [26] EMANUELI C, SHEARN A I, LAFTAH A, et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: An example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery[J]. PLoS One, 2016, 11(4): e154274.
    [27] DEDDENS J C, VRIJSEN K R, COLIJN J M, et al. Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac Injury[J]. J Cardiovasc Transl Res, 2016, 9(4): 291-301. doi: 10.1007/s12265-016-9705-1
    [28] 李竹英, 王婷, 李寒梅. 外泌体在支气管哮喘发病机制中的作用[J]. 中华全科医学, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228

    LI Z Y, WANG T, LI H M. The role of exosomes in the pathogenesis of bronchial asthma[J]. Chinese Journal of General Practice, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228
    [29] LEE B, KANG I, YU K. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes[J]. J Clin Med, 2021, 10(4): 711. doi: 10.3390/jcm10040711
    [30] NORONHA N C, MIZUKAMI A, CALIARI-OLIVEIRA C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies[J]. Stem Cell Res Ther, 2019, 10(1): 131. doi: 10.1186/s13287-019-1224-y
    [31] SUZUKI E, FUJITA D, TAKAHASHI M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes in cardiovascular disease[J]. Adv Exp Med Biol, 2017, 998: 179-185.
    [32] CHEN G, WANG M, RUAN Z, et al. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy[J]. Life Sci, 2021, 280: 119742. doi: 10.1016/j.lfs.2021.119742
    [33] GOLLMANN-TEPEKÖYLVC, PÖLZL L, GRABER M, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy[J]. Cardiovasc Res, 2020, 116(6): 1226-1236. doi: 10.1093/cvr/cvz209
    [34] LUTHER K M, HAAR L, MCGUINNESS M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119: 125-137. doi: 10.1016/j.yjmcc.2018.04.012
    [35] DE ABREU R C, FERNANDES H, DA C M P, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J]. Nat Rev Cardiol, 2020, 17(11): 685-697. doi: 10.1038/s41569-020-0389-5
    [36] PEZZANA C, AGNELY F, BOCHOT A, et al. Extracellular vesicles and biomaterial design: New therapies for cardiac repair[J]. Trends Mol Med, 2021, 27(3): 231-247. doi: 10.1016/j.molmed.2020.10.006
    [37] LV K, LI Q, ZHANG L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction[J]. Theranostics, 2019, 9(24): 7403-7416. doi: 10.7150/thno.32637
    [38] LIU B, LEE B W, NAKANISHI K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5): 293-303. doi: 10.1038/s41551-018-0229-7
    [39] MEHRYAB F, RABBANI S, SHAHHOSSEINI S, et al. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges[J]. Acta Biomater, 2020, 113: 42-62. doi: 10.1016/j.actbio.2020.06.036
    [40] WIKLANDER O, BRENNAN M Á, LÖTVALL J, et al. Advances in therapeutic applications of extracellular vesicles[J]. Sci Transl Med, 2019, 11(492): eaav8521. doi: 10.1126/scitranslmed.aav8521
    [41] WANG K J, ZHAO X, LIU Y Z, et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 38(3): 1015-1029. doi: 10.1159/000443053
    [42] FANG Y, XU Y, WANG R, et al. Recent advances on the roles of lncRNAs in cardiovascular disease[J]. J Cell Mol Med, 2020, 24(21): 12246-12257. doi: 10.1111/jcmm.15880
    [43] VAUSORT M, SALGADO-SOMOZA A, ZHANG L, et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction[J]. J Am Coll Cardiol, 2016, 68(11): 1247-1248. doi: 10.1016/j.jacc.2016.06.040
    [44] KHOSRAVI F, AHMADVAND N, BELLUSCI S, et al. The multifunctional contribution of FGF signaling to cardiac development, homeostasis, disease and repair[J]. Front Cell Dev Biol, 2021, 9: 672935. doi: 10.3389/fcell.2021.672935
    [45] REN Z, XIAO W, ZENG Y, et al. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux[J]. Int J Mol Med, 2019, 43(3): 1321-1330.
    [46] ITOH N, OHTA H, NAKAYAMA Y, et al. Roles of FGF signals in heart development, health, and disease[J]. Front Cell Dev Biol, 2016, 4(30): 110.
  • 加载中
计量
  • 文章访问数:  198
  • HTML全文浏览量:  128
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 网络出版日期:  2022-08-13

目录

    /

    返回文章
    返回