留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中西医康复治疗对脑卒中后骨骼肌损伤的修复作用及机制研究进展

洪幸 李蕊 魏鲁刚 张萍 张彭跃 卢静怡

洪幸, 李蕊, 魏鲁刚, 张萍, 张彭跃, 卢静怡. 中西医康复治疗对脑卒中后骨骼肌损伤的修复作用及机制研究进展[J]. 中华全科医学, 2022, 20(6): 1022-1026. doi: 10.16766/j.cnki.issn.1674-4152.002515
引用本文: 洪幸, 李蕊, 魏鲁刚, 张萍, 张彭跃, 卢静怡. 中西医康复治疗对脑卒中后骨骼肌损伤的修复作用及机制研究进展[J]. 中华全科医学, 2022, 20(6): 1022-1026. doi: 10.16766/j.cnki.issn.1674-4152.002515
HONG Xing, LI Rui, WEI Lu-gang, ZHANG Ping, ZHANG Peng-yue, LU Jing-yi. Research progress of rehabilitation effect and mechanism of traditional Chinese and Western medicine on skeletal muscle injury after stroke[J]. Chinese Journal of General Practice, 2022, 20(6): 1022-1026. doi: 10.16766/j.cnki.issn.1674-4152.002515
Citation: HONG Xing, LI Rui, WEI Lu-gang, ZHANG Ping, ZHANG Peng-yue, LU Jing-yi. Research progress of rehabilitation effect and mechanism of traditional Chinese and Western medicine on skeletal muscle injury after stroke[J]. Chinese Journal of General Practice, 2022, 20(6): 1022-1026. doi: 10.16766/j.cnki.issn.1674-4152.002515

中西医康复治疗对脑卒中后骨骼肌损伤的修复作用及机制研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002515
基金项目: 

国家自然科学基金项目 81960731

国家自然科学基金项目 81660384

详细信息
    通讯作者:

    李蕊, E-mail: 309670682@qq.com

  • 中图分类号: R743.3 R247.9

Research progress of rehabilitation effect and mechanism of traditional Chinese and Western medicine on skeletal muscle injury after stroke

  • 摘要: 脑卒中是指由于脑部血管突然破裂或因血管阻塞引起脑组织损伤的一组疾病。脑卒中是全球人口第二大死亡原因,也是导致残疾的主要原因,每年导致约550万人死亡,脑卒中后大约有60%的患者处于残疾状态,给家庭及社会带来极大负担。目前脑卒中的治疗主要侧重于恢复大脑血供和治疗中风引起的神经损伤,对于脑卒中后导致的外周系统障碍的治疗研究相对较少。骨骼肌是脑卒中后主要影响的外周功能器官,在脑卒中后神经系统的损害会导致肌肉失神经支配,从而导致偏瘫或肌肉力量下降,缺乏神经支配使肌肉无法产生运动所需的肌力,从而无法完成日常任务。在整个过程中骨骼肌出现各种继发改变,包括骨骼肌无力、骨骼肌痉挛、骨骼肌萎缩等,导致肢体功能障碍。而对骨骼肌变化的机制研究则证实脑卒中后骨骼肌的结构和代谢发生明显变化,其中神经肌肉接头功能异常,骨骼肌中炎症标志物的升高,骨骼肌蛋白的降解,肌纤维的表型转变都与脑卒中后骨骼肌功能障碍密切相关。因此脑卒中后骨骼肌的修复及功能的恢复非常重要,现有的康复治疗对脑卒中后骨骼肌的恢复具有良好的修复作用,能降低炎性因子的表达,恢复神经肌肉接头的联系,增强外周与中枢的联系,促进骨骼肌肌纤维的生长,从而达到肢体功能的恢复。本文对脑卒中后骨骼肌的康复治疗进行综述,阐明相关机制,以期为脑卒中后患侧骨骼肌的康复治疗研究提供参考。

     

  • [1] SELWANESS M, VAN DEN BOUWHUIJSEN Q J, VERWOERT G C, et al. Blood pressure parameters and carotid intraplaque hemorrhage as measured by magnetic resonance imaging: The rotterdam study[J]. Hypertension, 2013, 61(1): 76-81. doi: 10.1161/HYPERTENSIONAHA.112.198267
    [2] MARAKA S, JIANG Q, JAFARI-KHOUZANI K, et al. Degree of corticospinal tract damage correlates with motor function after stroke[J]. Ann Clin Transl Neurol, 2014, 1(11): 891-899. doi: 10.1002/acn3.132
    [3] SPRINGER J, SCHUST S, PESKE K, et al. Catabolic signaling and muscle wasting after acute ischemic stroke in mice: Indication for a stroke-specific sarcopenia[J]. Stroke, 2014, 45(12): 3675-3683. doi: 10.1161/STROKEAHA.114.006258
    [4] DESGEORGES M M, DEVILLARD X, TOUTAIN J, et al. Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia[J]. Stroke, 2015, 46(6): 1673-1680. doi: 10.1161/STROKEAHA.114.008574
    [5] YANG F Z, JEHU D A M, OUYANG H, et al. The impact of stroke on bone properties and muscle-bone relationship: A systematic review and meta-analysis[J]. Osteoporos Int, 2020, 31(2): 211-224. doi: 10.1007/s00198-019-05175-4
    [6] OKUYAMA K, KAWAKAMI M, HIRAMOTO M, et al. Relationship between spasticity and spinal neural circuits in patients with chronic hemiparetic stroke[J]. Exp Brain Res, 2018, 236(1): 207-213. doi: 10.1007/s00221-017-5119-9
    [7] CARDA S, CISARI C, INVERNIZZI M. Sarcopenia or muscle modifications in neurologic diseases: A lexical or patophysiological difference?[J]. Eur J Phys Rehabil Med, 2013, 49(1): 119-130.
    [8] OHKAWARA B, ITO M, OHNO K. Secreted signaling molecules at the neuromuscular junction in physiology and pathology[J]. Int J Mol Sci, 2021, 22(5): 2455. doi: 10.3390/ijms22052455
    [9] TEZUKA T, INOUE A, HOSHI T, et al. The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses[J]. Proc Natl Acad Sci U S A, 2014, 111(46): 16556-16561. doi: 10.1073/pnas.1408409111
    [10] RUDOLF R, BOGOMOLOVAS J, STRACK S, et al. Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways[J]. Age (Dordr), 2013, 35(5): 1663-1674. doi: 10.1007/s11357-012-9468-9
    [11] COELHO JUNIOR H J, GAMBASSI B B, DINIZ T A, et al. Inflammatory mechanisms associated with skeletal muscle sequelae after stroke: Role of physical exercise[J]. Mediators Inflamm, 2016. DOI: 10.1155/2016/3957958.
    [12] THOMA A, LIGHTFOOT A P. NF-κB and inflammatory cytokine signalling: Role in skeletal muscle atrophy[J]. Adv Exp Med Biol, 2018, 1088: 267-279.
    [13] LI J, YI X, YAO Z, et al. TNF receptor-associated factor 6 mediates tnf alpha-induced skeletal muscle atrophy in mice during aging[J]. J Bone Miner Res, 2020, 35(8): 1535-1548. doi: 10.1002/jbmr.4021
    [14] DESGEORGES M M, DEVILLARD X, TOUTAIN J, et al. Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia[J]. Stroke, 2015, 46(6): 1673-1680. doi: 10.1161/STROKEAHA.114.008574
    [15] NINFALI C, SILES L, DARLING D S, et al. Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3[J]. Nucleic Acids Res, 2018, 46(20): 10697-10708.
    [16] GANDOLFI M, SMANIA N, VELLA A, et al. Assessed and emerging biomarkers in stroke and training-mediated stroke recovery: State of the art[J]. Neural Plast, 2017. DOI: 10.1155/2017/1389475.
    [17] 沈筠恬, 喻妙梅, 仇嘉颖, 等. 快肌与慢肌失神经支配后的形态学变化[J]. 解剖学杂志, 2019, 42(2): 167-172. doi: 10.3969/j.issn.1001-1633.2019.02.013

    SHEN J T, YU M M, QIU J Y, et al. Morphological changes of denervated fast-twitch and slow-twitch muscles[J]. Chinese Journal of Anatomy, 2019, 42(2): 167-172. doi: 10.3969/j.issn.1001-1633.2019.02.013
    [18] DU J, YANG F, HU J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments[J]. Neuroimage Clin, 2019. DOI: 10.1016/j.nicl.2018.101620.
    [19] LUO J, ZHENG H, ZHANG L, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats[J]. Int J Mol Sci, 2017, 18(2): 455. doi: 10.3390/ijms18020455
    [20] ZONG X, LI Y, LIU C, et al. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization[J]. Theranostics, 2020, 10(26): 12090-12110. doi: 10.7150/thno.51573
    [21] BORNHEIM S, CROISIER J L, MAQUET P, et al. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients-a randomized, triple blind, sham-controlled study[J]. Brain Stimul, 2020, 13(2): 329-336. doi: 10.1016/j.brs.2019.10.019
    [22] HORDACRE B, MOEZZI B, RIDDING M-C. Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study[J]. Hum Brain Mapp, 2018, 39(8): 3326-3339. doi: 10.1002/hbm.24079
    [23] CARVALHO D, TEIXEIRA S, LUCAS M, et al. The mirror neuron system in post-stroke rehabilitation[J]. Int Arch Med, 2013, 6(1): 41. doi: 10.1186/1755-7682-6-41
    [24] HIOKA A, TADA Y, KITAZATO K, et al. Activation of mirror neuron system during gait observation in sub-acute stroke patients and healthy persons[J]. J Clin Neurosci, 2019, 60: 79-83. doi: 10.1016/j.jocn.2018.09.035
    [25] SHIH T Y, WU C Y, LIN K C, et al. Effects of action observation therapy and mirror therapy after stroke on rehabilitation outcomes and neural mechanisms by MEG: Study protocol for a randomized controlled trial[J]. Trials, 2017, 18(1): 459. doi: 10.1186/s13063-017-2205-z
    [26] GANDHI D B, STERBA A, KHATTER H, et al. Mirror therapy in stroke rehabilitation: Current perspectives[J]. Ther Clin Risk Manag, 2020, 16: 75-85. doi: 10.2147/TCRM.S206883
    [27] LI F, ZHANG T, LI B-J, et al. Motor imagery training induces changes in brain neural networks in stroke patients[J]. Neural Regen Res, 2018, 13(10): 1771-1781. doi: 10.4103/1673-5374.238616
    [28] BELLO U M, WINSER S J, CHAN CCH. Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation[J]. Rev Neurosci, 2020, 31(6): 659-674. doi: 10.1515/revneuro-2019-0106
    [29] LINDER S M, ROSENFELDT A B, DAVIDSON S, et al. Forced, not voluntary, aerobic exercise enhances motor recovery in persons with chronic stroke[J]. Neurorehabil Neural Repair, 2019, 33(8): 681-690. doi: 10.1177/1545968319862557
    [30] IVEY F M, PRIOR S J, HAFER-MACKO C E, et al. Strength training for skeletal muscle endurance after stroke[J]. J Stroke Cerebrovasc Dis, 2017, 26(4): 787-794. doi: 10.1016/j.jstrokecerebrovasdis.2016.10.018
    [31] SOENDENBROE C, BECHSHOFT C J L, HEISTERBERG M F, et al. Key components of human myofibre denervation and neuromuscular junction stability are modulated by age and exercise[J]. Cells, 2020, 9(4): 893. doi: 10.3390/cells9040893
    [32] KIM D H, KANG C S, KYEONG S. Robot-assisted gait training promotes brain reorganization after stroke: A randomized controlled pilot study[J]. NeuroRehabilitation, 2020, 46(4): 483-489. doi: 10.3233/NRE-203054
    [33] HONG M, KIM M, KIM T W, et al. Treadmill exercise improves motor function and short-term memory by enhancing synaptic plasticity and neurogenesis in photothrombotic stroke mice[J]. Int Neurourol J, 2020, 24(Suppl 1): S28-S38. doi: 10.5213/inj.2040158.079
    [34] ISRAELY S, LEISMAN G, CARMELI E. Improvement in arm and hand function after a stroke with task-oriented training[J]. BMJ Case Rep, 2017. DOI: 10.1136/bcr-2017-219250.
    [35] OKABE N, HIMI N, MARUYAMA-NAKAMURA E, et al. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex[J]. PLoS One, 2017. DOI: 10.1371/journal.pone.0187413.
    [36] METTLER J A, BENNETT S M, DOUCET B M, et al. Neuromuscular electrical stimulation and anabolic signaling in patients with stroke[J]. J Stroke Cerebrovasc Dis, 2017, 26(12): 2954-2963. doi: 10.1016/j.jstrokecerebrovasdis.2017.07.019
    [37] PAN L H, YANG W W, KAO C L, et al. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke[J]. Sci Rep, 2018, 8(1): 9217. doi: 10.1038/s41598-018-27553-4
    [38] 刘学谦, 罗怀香, 张华, 等. 针刺对注射型坐骨神经损伤肌萎缩的影响[J]. 中国医药指南, 2012, 10(33): 65-66. doi: 10.3969/j.issn.1671-8194.2012.33.041

    LIU X Q, LUO H X, ZHANG H, et al. Effect of Acupuncture on Muscle Atrophy by Post Injection Sciatic Nerve Injury[J]. Guide of China Medicine, 2012, 10(33): 65-66. doi: 10.3969/j.issn.1671-8194.2012.33.041
    [39] 赵丹丹, 唐成林, 黄思琴, 等. 电针干预对失神经肌萎缩大鼠肌卫星细胞分化及肌纤维类型转化的影响[J]. 针刺研究, 2019, 44(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XCYJ201901007.htm

    ZHAO D D, TANG C L, HUANG S Q, et al. Effect of electroacupuncture on amyotrophia and expression of myogenic differentiation-related genes of gastrocnemius in rats with chronic constriction injury of sciatic nerve[J]. Acupuncture Research, 2019, 44(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XCYJ201901007.htm
    [40] XING Y, ZHANG M, LI W B, et al. Mechanisms involved in the neuroprotection of electroacupuncture therapy for ischemic stroke[J]. Front Neurosci, 2018, 12: 929. doi: 10.3389/fnins.2018.00929
    [41] 周建瑞, 冀丽丽, 刘佩, 等. 经筋推拿手法治疗对脑卒中后上肢痉挛的影响[J]. 湖北医药学院学报, 2020, 39(5): 471-473. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYX202005011.htm

    ZHOU J R, JI L L, LIU P, et al. Effect of muscle massage on upper limb spasticity after stroke[J]. Journal of Hubei University of Medicine, 2020, 39(5): 471-473. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYX202005011.htm
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  50
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 网络出版日期:  2022-09-21

目录

    /

    返回文章
    返回