Effects and research progress of transcranial magnetic stimulation on glial cells in the central nervous system
-
摘要: 经颅磁刺激通过非侵袭性地刺激神经元,产生局部磁场,进而诱导大脑产生局部电流,最终改变大脑皮质的电生理活动。经颅磁刺激有多种模式,且每种模式产生的影响也不同。经颅磁刺激能影响神经元兴奋性,且目前已经运用于疾病的诊断和治疗。成人大脑中的大多数细胞由胶质细胞组成,在数量和多样性上远远超过神经元。主要分为五大类,成人神经干细胞:产生学习和记忆所需的新神经元;星形胶质细胞:执行一系列不同的功能,包括神经递质摄取和缓冲细胞外钾离子浓度;少突胶质细胞:生成髓鞘以及为轴突提供营养支持;少突胶质细胞前体细胞:增殖并形成新的少突胶质细胞;小胶质细胞:是常驻的免疫细胞。每种类型的神经胶质细胞都有直接或间接应答电活动的能力:经颅磁刺激可以促进成人神经干细胞/祖细胞增殖,但对细胞存活和分化的影响还不明确;资料显示经颅磁刺激通过刺激星形胶质细胞,进而对突触的形成、成熟、修剪以及树突棘的形状产生影响;经颅磁刺激对星形胶质细胞和小胶质细胞的研究资料有限;虽然经颅磁刺激少突胶质细胞能动态调节神经传导速度,但其对少突胶质细胞的作用也缺乏完整资料。然而胶质细胞又在中枢神经系统起着至关重要的作用,所以经颅磁刺激对神经胶质细胞的影响无疑是一个值得仔细探查的领域。Abstract: Transcranial magnetic stimulation (TMS) non-invasively stimulates neurons by generating a localised magnetic field, which could induce an electrical current in the brain. TMS can regulate brain activity in different patterns. TMS has been applied to the diagnosis and treatment of different diseases because of its effects on neurons and glial cells. Glia comprise the majority of cells in the adult brain, far exceeding neurons in number and diversity. Glial cells can be divided into five types: adult neural stem cells, which generate new neurons that are required for learning and memory; astrocytes, which perform a diverse range of functions, including neurotransmitter uptake and the buffering of extracellular potassium ion concentration; oligodendrocytes, which support axons through myelin production and favour trophic growth; oligodendrocyte progenitor cells, which can promote the proliferation and generation of new oligodendrocytes; and microglia, which are the resident immune cells of the brain. Each type of glial cell could be influenced by electrical activity directly or indirectly, making them possible cellular effectors of TMS. TMS can promote the proliferation of adult neural stem cells/progenitor, but its influence on cell survival and differentiation is unclear. TMS can stimulate astrocytes and then influence the formation, maturation, synaptic pruning and shape of dendritic spines. The research data of TMS on astrocytes and microglia are limited. The TMS of oligodendrocytes can dynamically regulate nerve conduction velocity. Data relating to the response of oligodendrocyte-lineage cells to this treatment are lacking. However, glial cells play a vital role in the central nervous system. Thus, the influence of TMS on glial cells warrants careful examination.
-
[1] BARKER A T, FREESTON I L, JALINOUS R, et al. Magnetic stimulation of the human brain and peripheral nervous system: An introduction and the results of an initial clinical evaluation[J]. Neurosurgery, 1987, 20(1): 100-109. [2] 徐丽明. 重复经颅磁刺激治疗帕金森病的临床评价[J]. 中国医疗器械信息, 2019, 25(23): 110-111. doi: 10.3969/j.issn.1006-6586.2019.23.052XU L M. Clinical evaluation of repetitive transcranial magnetic stimulation for Parkinson's disease[J]. China Medical Device Information, 2019, 25(23): 110-111. doi: 10.3969/j.issn.1006-6586.2019.23.052 [3] 梁宝今, 王晓文, 张晗, 等. 阿尔茨海默病患者经颅磁刺激治疗的meta分析[J]. 科技导报, 2017, 35(9): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201709021.htmLIANG B J, WANG X W, ZHANG H, et al. Repetitive transcranial megnetic stimulation for Alzheimer's patient: A meta-analysis[J]. Science & Technology Review, 2017, 35(9): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201709021.htm [4] PENG J J, SHA R, LI M X, et al. Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke[J]. Exp Neurol, 2019, 313: 1-9. doi: 10.1016/j.expneurol.2018.12.002 [5] 胡树罡, 沈莹, 莫非, 等. 低频重复经颅磁刺激部位对老年慢性失眠患者的影响[J]. 中国康复医学杂志, 2019, 34(4): 433-439. doi: 10.3969/j.issn.1001-1242.2019.04.012HU S G, SHEN Y, MO F, et al. The influence of low-frequency repetitive transcranial magnetic stimulation sites on the elderly patients with chronic insomnia[J]. Chinese Journal of Rehabilitation Medicine, 2019, 34(4): 433-439. doi: 10.3969/j.issn.1001-1242.2019.04.012 [6] 谈丹丹, 洪道俊, 徐仁伵, 等. 神经胶质细胞和神经退行性疾病[J]. 中国老年学杂志, 2013, 33(2): 464-466. doi: 10.3969/j.issn.1005-9202.2013.02.114TAN D D, HONG D J, XU R S, et al. Glial cell and neurodegenerative diseases[J]. Chinese Journal of Gerontology, 2013, 33(2): 464-466. doi: 10.3969/j.issn.1005-9202.2013.02.114 [7] GUO F, LOU J, HAN X, et al. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke[J]. Front Physiol, 2017, 8: 559. doi: 10.3389/fphys.2017.00559 [8] CUI M C, GE H F, ZENG H, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation and differentiation after intracerebral hemorrhage in mice[J]. Cell Transplant, 2019, 28(5): 568-584. doi: 10.1177/0963689719834870 [9] ZHEN J L, QIAN Y J, FU J, et al. Deep brain magnetic stimulation promotes neurogenesis and restores cholinergic activity in a transgenic mouse model of Alzheimer's disease[J]. Front Neural Circuits, 2017, 11: 48. doi: 10.3389/fncir.2017.00048 [10] 张小乔, 李鹂, 霍江涛, 等. 重复经颅磁刺激对慢性应激抑郁大鼠抑郁行为及海马神经元再生的影响[J]. 中华物理医学与康复杂志, 2011, 33(5): 336-339. doi: 10.3760/cma.j.issn.0254-1424.2011.05.005ZHANG X Q, LI L, HUO J T, et al. Effects of repetitive transcranial magnetic stimulation on depression behavior and hippocampus neuron regeneration in chronic stress depression rats[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2011, 33(5): 336-339. doi: 10.3760/cma.j.issn.0254-1424.2011.05.005 [11] LUCAS N, HUBAINS P, LOAS P, et al. Treatment resistant depression: Actuality and perspectives in 2017[J]. Rev Med Brux, 2017, 38(1): 16-25. [12] 曹华. 经颅磁刺激对帕金森病小鼠侧脑室下区神经干细胞增殖的影响[J]. 山东医药, 2016, 56(26): 35-37. doi: 10.3969/j.issn.1002-266X.2016.26.010CAO H. The influence of transcranial magnetic stimulation on the proliferation of neural stem cells in the lateral subventricular zone of Parkinson's disease mice[J]. Shandong Medical Journal, 2016, 56(26): 35-37. doi: 10.3969/j.issn.1002-266X.2016.26.010 [13] 王玉珏, 辛宁宁. mGluR6对大鼠胚胎神经干细胞生物学功能的影响[J]. 陕西医学杂志, 2020, 49(3): 279-284. doi: 10.3969/j.issn.1000-7377.2020.03.005WANG Y Y, XIN N N. The influence of mGluR6 on biological function of rat embryonic neural stem cells[J]. Shaanxi Medical Journal, 2020, 49(3): 279-284. doi: 10.3969/j.issn.1000-7377.2020.03.005 [14] ZUO C C, CAO H, DING F F, et al. Neuroprotective efficacy of different levels of high-frequency repetitive transcranial magnetic stimulation in mice with CUMS-induced depression: Involvement of the p11/BDNF/Homer1a signaling pathway[J]. J Psychiatr Res, 2020, 125: 152-163. doi: 10.1016/j.jpsychires.2020.03.018 [15] LEE J Y, PARK H J, KIM J H, et al. Effects of low-and high-frequency repetitive magnetic stimulation on neuronal cell proliferation and growth factor expr-ession: A preliminary report[J]. Neurosci Lett, 2015, 604: 167-172. doi: 10.1016/j.neulet.2015.07.038 [16] HAN J, CALVO C F, KANG T H, et al. Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans[J]. Cell Rep, 2015, 10(7): 1158-1172. doi: 10.1016/j.celrep.2015.01.049 [17] HONG Y, LIU Q, PENG M N, et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats[J]. J Neuroinflammation, 2020, 17(1): 150. doi: 10.1186/s12974-020-01747-y [18] SASSO V, BISICCHIA E, LATINI L, et al. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury[J]. J Neuroinflammation, 2016, 13(1): 150. doi: 10.1186/s12974-016-0616-5 [19] 许惊飞, 郭铁成. 重复经颅磁刺激对神经病理性疼痛大鼠脊髓内星形胶质细胞的抑制作用[J]. 中华物理医学与康复杂志, 2016, 38(9): 659-663. doi: 10.3760/cma.j.issn.0254-1424.2016.09.004XU J F, GUO T S. Inhibition of astrocytes in the spinal cord by repetitive transcranial magnetic stimulation for relieving neuropathic pain[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2016, 38(9): 659-663. doi: 10.3760/cma.j.issn.0254-1424.2016.09.004 [20] ZORZO C, HIGARZA S G, MÉNDEZ M, et al. High frequency repetitive transcranial m-agnetic stimulation improves neuronal activity without affecting astrocytes and microglia density[J]. Brain Res Ball, 2019, 150: 13-20. doi: 10.1016/j.brainresbull.2019.05.004 [21] CLARKE D, PENROSE M A, PENSTONE T, et al. Frequency-specific effects of repetitive magnetic stimulation on primary astrocyte cultures[J]. Restor Neurol Neurosci, 2017, 35(6): 557-569. [22] 袁成芳, 楼小亮. 星形胶质细胞对神经回路形成作用研究进展[J]. 中国神经精神疾病杂志, 2020, 46(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJJ202001016.htmYUAN C F, LOU X L. Research progress on the role of astrocytes in neural circuit formation[J]. Chinese Journal of Nervous and Mental Diseases, 2020, 46(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJJ202001016.htm [23] LENZ M, PLATSCHEK S, PRIESEMANN V, et al. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons[J]. Brain Struct Funct, 2015, 220(6): 3323-3337. doi: 10.1007/s00429-014-0859-9 [24] CULLEN C L, YOUNG K L. How does transcranial magnetic stimulation influence glial cells in the central nervous system?[J]. Front Neural Circuits, 2016, 10: 26. [25] CROARKIN P E, NAKONEZNY P A, WALL C A, et al. Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents[J]. Psychiatry Res Neuroimaging, 2016, 247: 25-33. doi: 10.1016/j.pscychresns.2015.11.005 [26] 刘志娟, 吕佩源. 脑源性神经营养因子在突触可塑性中的作用[J]. 国际神经病学神经外科学杂志, 2015, 42(2): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-GWSK201502024.htmLIU Z J, LU P Y. He role of brain-derived neurotrophic factor in synaptic plasticity[J]. Journal of International Neurology and Neurosurgery, 2015, 42(2): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-GWSK201502024.htm [27] 钟祎, 黄阳亮, 许继德. 白细胞介素-1β在病理性疼痛大鼠脊髓LTP中的作用及机制[J]. 中国病理生理杂志, 2012, 28(3): 541-545. doi: 10.3969/j.issn.1000-4718.2012.03.028ZHONG Y, HUANG Y L, XU J D. Role of interleukin-1β in spinal LTP in rats with neuropathic pain[J]. Chinese Journal of Pathophysiology, 2012, 28(3): 541-545 doi: 10.3969/j.issn.1000-4718.2012.03.028 [28] 韩硕, 李云鸿, 周煜东, 等. 神经元轴突信号调节髓鞘发育调节神经发育的研究进展[J]. 生理科学进展, 2018, 49(3): 181-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ201803005.htmHAN S, LI Y H, ZHOU Y D, et al. Research advances in the regulation of axonal signals on myelin development[J]. Progress in Physiological Sciences, 2018, 49(3): 181-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ201803005.htm [29] BANERJEE J, SORRELL M E, CELNIK P A, et al. Immediate effects of repetitive magnetic stimulation on single cortical pyramidal neurons[J]. PLoS One, 2017, 12(1): 1-14. [30] DOLGOVA N, WEI Z, SPINK B, et al. Low-field magnetic stimulation accelerates the differentiation of oligodendrocyte precursor cells via non-canonical TGF-β signaling pathways[J]. Mol Neurobiol, 2021, 58(2): 855-866. doi: 10.1007/s12035-020-02157-0 [31] 易敏, 杜君卿, 黄浩, 等. 中枢神经系统少突胶质细胞前体细胞产生的研究进展[J]. 生命科学研究, 2017, 21(6): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SMKY201706012.htmYI M, DU J Q, HUANG H, et al. Progresses on the Generation of Oligodendrocyte Progenitor Cells in Central Nervous System[J]. Life Science Research, 2017, 21(6): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SMKY201706012.htm [32] SUMI T, HARADA K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors[J]. Sci Rep, 2020, 10(1): 14711. DOI: 10.1038/s41598-020-71528-3. [33] JANG M, GOULD E, XU J, et al. Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem[J]. Elife, 2019, 8: e42156.
点击查看大图
计量
- 文章访问数: 409
- HTML全文浏览量: 98
- PDF下载量: 30
- 被引次数: 0