The application value of magnetic resonance MRS, DWI and SWI sequences in the grading diagnosis of glioma
-
摘要:
目的 探讨氢质子磁共振波谱分析(1H-MRS)、扩散加权成像(DWI)及磁敏感加权成像(SWI)在胶质瘤分级诊断中的应用价值。 方法 收集2016年12月—2020年3月浙江省台州医院经手术或活检病理证实的胶质瘤患者共76例,按照2016版WHO中枢神经系统肿瘤分类标准,将所有病例分为低级别组(Ⅰ~Ⅱ级,31例)和高级别组(Ⅲ~Ⅳ级,45例)。原始数据利用GE ADW 4.5工作站Functool软件处理,分别选取磁共振波谱(MRS)、DWI及SWI软件,测量肿瘤实质区MRS主要代谢物(胆碱、肌酸、氮-乙酰天门冬氨酸)并测算出比值、表观扩散系数(ADC)及肿瘤磁敏感信号强度(ITSS),并采用Mann-Whitney U检验对2组结果进行统计分析。 结果 低级别脑胶质瘤组Cho/NAA中位数为1.780,Cho/Cr中位数为1.920,NAA/Cr中位数为0.930,ADC值中位数为1.730×10-3mm2/s,ITSS评分中位数为1.0。高级别脑胶质瘤组Cho/NAA中位数为4.390,Cho/Cr中位数为3.560,NAA/Cr中位数为0.780,ADC值中位数为1.030×10-3mm2/s,ITSS评分中位数为2.0。2组Cho/NAA、Cho/Cr、NAA/Cr、ADC值及ITSS评分比较差异均有统计学意义(均P < 0.001)。 结论 MR多模态成像(MRS、DWI及SWI)在胶质瘤分级诊断中有重要的应用价值。 Abstract:Objective To investigate the application value of 1H-magnetic resonance spectroscopy (1H-MRS), diffusion weighted imaging (DWI) and susceptibility weighted imaging (SWI) in the grading diagnosis of glioma. Methods Seventy-six cases of glioma confirmed by surgery or biopsy in our hospital were collected. According to the 2016 Edition of the WHO classification standard of the central nervous system tumors, the cases were divided into low-level group of glioma (Ⅰ-Ⅱ, 31 cases) and the high-level group of glioma (Ⅲ-Ⅳ, 45 cases). The original data were processed with the Functool software of GE ADW 4.5 workstation. MRS, DWI and SWI mapping software were selected to measure the main metabolites including choline (CHO), creatine (CR) and N-acetylaspartate (NAA) in the tumor parenchymal area of MRS and calculated the ratio, apparent diffusion coefficient (ADC) and intertumoral susceptibility signal (ITSS). Statistical analysis was performed on the results of the two groups with Mann-Whitney U Test. Results In the low-grade glioma group and high-grade glioma group, the Cho/NAA ratios were 1.780 and 4.390, the Cho/Cr ratios were 1.920 and 3.560, and the NAA/Cr ratios were 0.930 and 0.780, respectively. ADC values were 1.730 ×10-3mm2/s and 1.030×10-3mm2/s, ITSS scores were 1.0 and 2.0, respectively. The differences of Cho/NAA, Cho/Cr, NAA/Cr, ADC and ITSS scores were statistically significant between two groups (all P < 0.001). Conclusion MR multimodal imagings (MRS, DWI and SWI) show important application value in the grading diagnosis of glioma. -
表 1 低、高级别组胶质瘤实质部分ADC值及ITSS评分比较[M(P25, P75)]
Table 1. Comparison of ADC values and ITSS scores in parenchyma of low and high grade gliomas [M(P25, P75)]
组别 例数 ADC值(×10-3mm2/s) ITSS评分(分) 低级别组 31 1.730(1.630,1.770) 1.0(0,1.0) 高级别组 45 1.030(0.935,1.135) 2.0(2.0,2.0) Z值 -7.064 -7.697 P值 <0.001 <0.001 表 2 低、高级别组胶质瘤实质部分各主要代谢物值比较[M(P25, P75)]
Table 2. Comparison of main metabolites in parenchyma of glioma between low and high grade groups [M(P25, P75)]
组别 例数 Cho/NAA Cho/Cr NAA/Cr 低级别组 31 1.780(1.470,2.270) 1.920(1.710,2.310) 0.930(0.790,1.270) 高级别组 45 4.390(3.570,5.250) 3.560(2.840,4.215) 0.780(0.600,0.880) Z值 -7.372 -6.934 -4.230 P值 <0.001 <0.001 <0.001 -
[1] 周瑞芳, 金建明, 叶军, 等. 神经胶质瘤患者血浆中TF、TFPI-1及TFPI-2的表达及意义[J]. 肿瘤学杂志, 2018, 24(2): 168-170. https://www.cnki.com.cn/Article/CJFDTOTAL-XHON201802021.htmZHOU R F, JIN J M, YE J, et al. Expression of detection of plasma TF, TFPI-1 and TFPI-2 and their significance in patients with glioma[J]. Journal of Chinese Oncology, 2018, 24(2): 168-170. https://www.cnki.com.cn/Article/CJFDTOTAL-XHON201802021.htm [2] LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. doi: 10.1007/s00401-016-1545-1 [3] 王佳, 梁奕, 范文辉, 等. 联合1H-MRS及DTI在脑胶质瘤级别的应用[J]. 医学影像学杂志, 2018, 28(3): 362-365. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ201803005.htmWANG J, LIAN Y, FAN W H, et al. Combination use of 1H-MRS and DTI in the grading of cerebral gliomas[J]. Journal of Medical Imaging, 2018, 28(3): 362-365. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ201803005.htm [4] PARK M J, KIM H S, JAHNG G H, et al. Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: Comparison with MR perfusion imaging[J]. AJNR Am J Neuroradiol, 2009, 30(7): 1402-1408. doi: 10.3174/ajnr.A1593 [5] 杨晓彤, 吴元华, 熊爱华, 等. 单发性胶质瘤的MRI征象特征及对肿瘤病理级别的判断[J]. 中国现代医生, 2019, 57(5): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS201905032.htmYANG X T, WU Y H, XIONG A H, et al. MRI features of single glioma and the judgment of tumor pathological grade[J]. China Modern Doctor, 2019, 57(5): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYS201905032.htm [6] 闫凤全, 刘丽, 姬士军, 等. 脑胶质瘤的MRI诊断及鉴别诊断与诊断成功率观察[J]. 现代医用影像学, 2019, 28(3): 546-547. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYY201903027.htmYAN F Q, LIU L, JI S J, et al. MRI diagnosis, differential diagnosis and success rate of glioma[J]. Modern Medical Imageology, 2019, 28(3): 546-547. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYY201903027.htm [7] LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: The bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. doi: 10.1038/nrclinonc.2017.141 [8] 刘铁军, 郑英杰. 氢质子磁共振波谱联合弥散加权成像在鉴别脑胶质瘤术后复发及放射性损伤中的应用价值[J]. 广西医学, 2016, 38(5): 711-714. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYX201605036.htmLIU T J, ZHENG Y J. Application value of hydrogen proton magnetic resonance spectroscopy combined with diffusion weighted imaging in differentiating recurrence and radiation injury of glioma after surgery[J]. Guangxi Medical Journal, 2016, 38(5): 711-714. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYX201605036.htm [9] 张玉琴, 徐海东, 董海波, 等. 3.0T氢质子磁共振波谱成像在胶质瘤术前分级及术后随访中的应用[J]. 医学影像学杂志, 2016, 26(2): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ201602003.htmZHANG Y Q, XU H D, DONG H B, et al. The advantages and disadvantages of 3. 0 T spectroscopic imaging in the preoperative grading and postoperative followup of glioma[J]. Journal of Medical Imaging, 2016, 26(2): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ201602003.htm [10] SHI W, LI F, LI H, et al. Evaluation of human glioma using in-vivo proton magnetic resonance spectroscopy combined with expression of cyclooxygenase-2: A preliminary clinical trial[J]. Neuroreport, 2017, 28(7): 414-420. [11] DONNERS R, BLACKLEDGE M, TUNARIU N, et al. Quantitative whole-body diffusion-weighted MR imaging[J]. Magn Reson Imaging Clin N Am, 2018, 26(4): 479-494. [12] CARAVAN I, CIORTEA C A, CONTIS A, et al. Diagnostic value of apparent diffusion coefficient in differentiating between high-grade gliomas and brain metastases[J]. Acta Radiol, 2018, 59(5): 599-605. [13] 冯贵堂, 韩东明, 岳巍, 等. 多参数MRI在诊断脑胶质瘤中的价值及其与Ki-67的相关性分析[J]. 放射学实践, 2017, 32(5): 483-487. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201705015.htmFENG G T, HAN D M, YUE W, et al. Multi-parameter magnetic resonance imaging in the diagnosis of glioma and its correlation with Ki-67[J]. Radiologic Practice, 2017, 32(5): 483-487. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201705015.htm [14] 尹子铭, 石建军, 续秋艳, 等. DWI联合MRS对病毒性脑炎和脑低级别胶质瘤的诊断价值[J]. 中国CT和MRI杂志, 2018, 16(1): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR201801005.htmYIN Z M, SHI J J, XU Q Y, et al. Diagnostic value of diffusion weighted imaging (DWI) and hydrogen proton magnetic resonance spectroscopy (MRS)for virus encephalitits and low-grade glioma[J]. Chinese Journal of CT and MRI, 2018, 16(1): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR201801005.htm [15] LI X, ZHU Y, KANG H, et al. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging[J]. Cancer Imaging, 2015, 15(1): 4. [16] 杜常月, 苗娜, 齐旭红, 等. 磁敏感加权成像及体素内不相干运动成像在脑胶质瘤术前分级中的应用研究[J]. 肿瘤影像学, 2019, 28(3): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYX201903003.htmDU C Y, MIAO N, QI X H, et al. Study on susceptibility weighted imaging and intravoxel incoherent motion in the preoperative grading of gliomas[J]. Oncoradiology, 2019, 28(3): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYX201903003.htm [17] 李章宇, 钱海峰, 孙胜杰, 等. 磁共振灌注加权成像与扩散张量成像在脑胶质瘤分级诊断中的应用[J]. 中华全科医学, 2017, 15(6): 1013-1015. doi: 10.16766/j.cnki.issn.1674-4152.2017.06.032LI Z Y, QIAN H F, SUN S J, et al. Magnetic resonance diffusion tensor and perfusion-weighted imaging for grading of cerebral gliomas[J]. Chinese Journal of General Practice, 2017, 15(6): 1013-1015. doi: 10.16766/j.cnki.issn.1674-4152.2017.06.032