Role of long noncoding RNA on signaling pathways related to acute gout arthritis
-
摘要: 长链非编码RNA(long non-coding RNA, lncRNA)是通过调控邻近基因的表达来发挥作用的一类长度大于200个核苷酸的非编码RNA,无蛋白质编码功能,但是可以与蛋白质的多个位点结合,通过碱基互补配对原则与DNA、RNA发生特异性作用。近年来,随着基因检测技术的快速发展,lncRNA与多种免疫系统疾病的关系逐渐被人们所认识。痛风属于免疫系统疾病的范畴,因人体嘌呤代谢、尿酸生成与排泄异常,导致尿酸盐晶体沉积于组织或器官引发炎症反应,从而引起受累部位的剧烈疼痛,难以耐受。随着生活水平的提高和饮食结构的变化,痛风的发病率愈来愈高,严重影响患者的生活质量。目前,有研究指出,lncRNA与痛风的发病密切相关,痛风发作所涉及的炎症信号通路主要以Toll样受体(Toll-like receptors,TLRs)信号通路、Nod样受体蛋白3(Nod-like receptor protein 3)炎性小体信号通路及嘌呤受体P2X7(purinergic 2X7 receptor,P2X7R)信号通路为主,lncRNA除了通过调控免疫细胞参与痛风的发作,还通过影响上述信号通路发挥作用,本文主要就lncRNA与急性痛风性关节炎相关的信号通路及上述因子的关系进行探讨,进一步揭示痛风的发病机制,以期为痛风的防治提供新的方向。Abstract: Long non-conding RNA (lncRNA) is a kind of noncoding RNA more than 200 nucleotides long. It plays a role in regulating the expression of neighboring genes. It has no protein-coding function but can bind to multiple sites of protein. Specific interaction with DNA and RNA occurs through the principle of base complementary pairing. In recent years, with the rapid development of gene-detection technology, the relationship between lncRNA and various immune-system diseases has been gradually recognised. Gout belongs to the category of immune-system diseases. Owing to abnormal purine metabolism and uric acid production and excretion in the human body, urate crystals deposit in tissues or organs and trigger inflammatory reactions, thereby causing severe pain on the affected site and difficulty toleration. With the improvement in living standard and the change of diet structure, the incidence of gout is increasing, thereby seriously affecting people ' s life quality. Studies have pointed out that lncRNA is closely related to the onset of gout, and the inflammatory signaling pathways involved in gout attack are primarily the toll-like receptor signaling pathway, nod-like receptor protein 3 inflammasome signaling pathway, and Purinergic 2X7 receptor signaling pathway. In addition to regulating immune cells to participate in the onset of gout, lncRNA also plays a role by affecting the above signal pathways. This article primarily discusses the relationship between lncRNA and signal pathways and factors related to acute gout arthritis, further revealing the pathogenesis of gout, to provide a new direction for the prevention and treatment of gout.
-
Key words:
- Long noncoding RNA /
- Gout /
- Inflammatory response /
- Signal pathway /
- Immune regulation
-
[1] 李志军. 痛风及高尿酸血症的诊断与治疗[J]. 中华全科医学, 2020, 18(1): 5-6. http://www.zhqkyx.net/article/id/35702025-3b64-4c17-b820-044055abc76eLI Z J. Diagnosis and treatment of gout and hyperuricemia[J]. Chinese Journal of General Practice, 2020, 18(1): 5-6. http://www.zhqkyx.net/article/id/35702025-3b64-4c17-b820-044055abc76e [2] 赖爱云, 徐健, 陶丽. TNF-α在痛风性关节炎患者炎性反应中的变化及意义[J]. 河北医药, 2019, 41(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYZ201903015.htmLAI A Y, XU J, TAO L. Changes and significance of TNF-α in inflammatory reaction in patients with gouty arthritis[J]. Hebei Medical Journal, 2019, 41(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYZ201903015.htm [3] 朱克强, 王晨, 惠晓艳, 等. 肿瘤坏死因子α在痛风性关节炎发病机制中的作用研究进展[J]. 浙江医学, 2020, 42(6): 638-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202006037.htmZHU K Q, WANG C, HUI X Y, et al. Advances in the role of tumor necrosis factor α in the pathogenesis of gout arthritis[J]. Zhejiang Medical Journal, 2020, 42(6): 638-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202006037.htm [4] DALBETH N, GOSLING A L, GAFFO A, et al. Gout[J]. Lancet, 2021, 397(10287): 1843-1855. doi: 10.1016/S0140-6736(21)00569-9 [5] 高大玉, 张均雩, 李倩, 等. 痛风性关节炎急性发作期血尿下降的机制研究[J]. 医学研究生学报, 2022, 35(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202201013.htmGAO D Y, ZHANG Y Y, LI Q, et al. Mechanism of hematuria decline in acute gout arthritis[J]. Journal of Medical Postgraduates, 2022, 35(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202201013.htm [6] CHEN S L, CHEN J R, YANG S W. Painless gouty tophus in the nasal bridge: A case report and literature review[J]. Medicine (Baltimore), 2019, 98(11): e14850. DOI: 10.1097/MD.0000000000014850. [7] 夏雯洁, 张雅婷, 涂琳琳, 等. 长链非编码RNA作为自身免疫病生物标志物的研究进展[J]. 现代免疫学, 2022, 42(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202201010.htmXIA W J, ZHANG Y T, TU L L, et al. Research advances of long non-coding RNA as the biomarker for autoimmune diseases[J]. Current Immunology, 2022, 42(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202201010.htm [8] 周蜜, 王一飞, 袁佳沁, 等. 急性痛风性关节炎免疫学发病机制研究进展[J]. 世界临床药物, 2018, 39(11): 779-782. https://www.cnki.com.cn/Article/CJFDTOTAL-GWHH201811014.htmZHOU M, WANG Y F, YUAN J Q, et al. Research progress on the immune-pathogenesis of acute gouty arthritis[J]. World Clinical Drugs, 2018, 39(11): 779-782. https://www.cnki.com.cn/Article/CJFDTOTAL-GWHH201811014.htm [9] 胡玉懿, 陈朴, 郭玮, 等. 髓样分化因子88多态性的研究进展[J]. 检验医学, 2020, 35(4): 380-386. doi: 10.3969/j.issn.1673-8640.2020.04.020HU Y Y, CHEN B, GUO W, et al. Research progress of myeloid differentiation factor 88 polymorphism[J]. Laboratory Medicine, 2020, 35(4): 380-386. doi: 10.3969/j.issn.1673-8640.2020.04.020 [10] 王雪霖, 曹秀梅, 闫建设. 中性粒细胞胞外诱捕网在痛风性关节炎中的作用: 一枚硬币的两面[J]. 自然杂志, 2021, 43(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202102012.htmWANG X L, CAO X M, YAN J S. The role of neutrophil extracellular traps in gouty arthritis: two sides of the same coin[J]. Chinese Journal of Nature, 2021, 43(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202102012.htm [11] 冯华国, 冯毅, 张玲, 等. NLRPs炎性小体激活和调控机制研究现状[J]. 检验医学与临床, 2021, 18(20): 3048-3051. doi: 10.3969/j.issn.1672-9455.2021.20.036FENG H G, FENG Y, ZHANG L, et al. Current research on activation and regulation of NLRPs inflammasome[J]. Laboratory Medicine and Clinic, 2021, 18(20): 3048-3051. doi: 10.3969/j.issn.1672-9455.2021.20.036 [12] MEYERS A K, ZHU X. The NLRP3 inflammasome: Metabolic regulation and contribution to inflammaging[J]. Cells, 2020, 9(8): 1808. doi: 10.3390/cells9081808 [13] XIA X M, LU B, DONG W J, et al. Atypical gasdermin D and mixed lineage kinaxe domain-like protein leakage aggravates tetrachiorobenzoquinone-induce NOD-like receptoe protein 3 inflammasome activivation[J]. Chen Res Toxicol, 2018, 31(12): 1418-1425. doi: 10.1021/acs.chemrestox.8b00306 [14] JIANG D Y, LI W H, REN P P, et al. Progress in the mechanism of purinergic receptor P2X, ligand-gated ion channel 7 and its downstrream molecules in gouty arthritis[J]. WJTCM, 2020, 15(8): 1221-1224. [15] QIA X Y, ZHAO J Y, YEUNG P Y, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52. [16] CORLEY M, BURNS M C, YEO G W. How RNA-binding proteins interact with RNA: Molecules and mechanisms[J]. Mol Cell, 2020, 78(1): 9-29. [17] 刘磊, 赵天仪, 曹灵, 等. 急性痛风自发性缓解机制研究进展[J]. 中华风湿病学杂志, 2018, 22(3): 208-211.LIU L, ZHAO T Y, CAO L, et al. Research progress on mechanism of spontaneous remission of acute gout[J]. Chinese Journal of Rheumatology, 2018, 22(3): 208-211. [18] ROBINSON E K, COVARRUBIAS S, CARPENTER S. The how and why of lncRNA function: An innate immune perspective[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4): 194419. DOI: 10.1016/j.bbagrm.2019.194419. [19] CHEN W X, LIU S N, WANG F. Potential impact and mechanism of Long Non-coding RNAs on cancer and associated T cells[J]. J Cancer, 2021, 12(16): 4873-4882. [20] ZHANG W, YANG M Y, YU L, et al. Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression[J]. Am J Reprod Immunol, 2020, 83(6): e13239. DOI: 10.1111/aji.13239. [21] JAFARI L, IZADIRAD M, VATANMAKANIAN M, et al. IFNG-AS1 and MAF4 long non-coding RNAs are upregulated in acute leukemia patients who underwent bone marrow transplantation[J]. Curr Res Transl Med, 2021, 69(4): 103307. DOI: 10.1016/j.retram.2021.103307. [22] LEE C P, HUANG Y N, Nithiyanantham S, et al. LncRNA-Jak3: Jak3 coexpressed pattern regulates monosodium urate crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression[J]. Environ Toxicol, 2019, 34(2): 179-187. [23] ZHANG Q, CHAO T C, PATIL V S, et al. The long noncoding RNA ROCKI regulates inflammatory gene expression[J]. EMBO J, 2019, 38(8): e100041. DOI: 10.15252/embj.2018100041. [24] LI J S, WANG M W, SONG L T, et al. LncRNA MALAT1 regulates inflammatory cytokine production in lipopolysaccharide-stimulated human gingival fibroblasts through sponging miR-20a and activating TLR4 pathway[J]. J Periodontal Res, 2020, 55(2): 182-190. [25] 潘显阳, 陶金辉, 李向培. 痛风性关节炎发病的炎性机制研究进展[J]. 安徽医科大学学报, 2021, 56(7): 1167-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202107032.htmPAN X Y, TAO J H, LI X P. Advances in the inflammatory mechanism of gout arthritis[J]. Acta Universitatis Medicinalis Anhui, 2021, 56(7): 1167-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202107032.htm [26] LIU C L, DENG Z Y, DU E R, et al. Long non coding RNA BC168687 small interfering RNA reduces high glucose and high free fatty acid induced expression of P2X7 receptors in satellite glial cells[J]. Mol Med Rep, 2018, 17(4): 5851-5859. [27] HUANG N, FAN Z D, MA L, et al. Long non coding RNA RP11 340F14.6 promotes a shift in the Th17/Treg ratio by binding with P2X7R in juvenile idiopathic arthritis[J]. Int J Mol Med, 2020, 46(2): 859-868. [28] HU J C, WU H, WANG D C, et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis[J]. Biochimie, 2018, 157(2): 102-110. [29] XUE Z Y, ZHANG Z M, LIU H K, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation[J]. Cell Death Differ, 2019, 26(1): 130-145. [30] YU H, LIN L B, ZHANG Z Q, et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. [31] GUPTA S C, AWASTHEE N, RAI V, et al. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188316. DOI: 10.1016/j.bbcan.2019.188316. [32] WEI S B, LIU Q Y. Long noncoding RNA MALAT1 modulates sepsis-induced cardiac inflammation through the miR-150-5p/NF-κB axis[J]. Int J Clin Exp Pathol, 2019, 12(9): 3311-3319. [33] ZHANG P H, YU C L, YU J W, et al. Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription[J]. Cell Mol Life Sci, 2021, 78(5): 2387-2404. [34] MA M R, PEI Y F, WANG X X, et al. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway[J]. Cell Prolif, 2019, 52(1): e12525. DOI: 10.1111/cpr.12525. [35] CORREIA M, GJORGJIEVA M, DOLICKA D, et al. Deciphering miRNAs ' action through miRNA editing[J]. Int J Mol Sci, 2019, 20(24): 6249. [36] KANDELL W M, DONATELLI S S, TRINH T L, et al. MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma[J]. PLoS One, 2020, 15(2): e0225820. DOI: 10.1371/journal.pone.0225820. [37] ZHANG Q B, QING Y F, QIN C C, et al. Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome[J]. Arthritis Res Ther, 2018, 20(1): 45. [38] MA T, LIU X, CEN Z F, et al. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2[J]. Arthritis Res Ther, 2018, 20(1): 34. [39] ZHOU R S, ZHANG E X, SUN Q F, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue[J]. BMC Cancer, 2019, 19(1): 779. [40] 李林林, 吴聪. 长链非编码RNA在自身免疫性疾病中的研究进展[J]. 基础医学与临床, 2019, 39(4): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL201904023.htmLI L L, HAO C. Research progress of long noncoding RNAs in autoimmune diseases[J]. Basic & Clinical Medicine, 2019, 39(4): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL201904023.htm
点击查看大图
计量
- 文章访问数: 209
- HTML全文浏览量: 86
- PDF下载量: 2
- 被引次数: 0