留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长链非编码RNA对急性痛风性关节炎相关信号通路的作用探讨

鲍艳媛 郗域江 高嘉美 张丽萍 谢招虎 李兆福

鲍艳媛, 郗域江, 高嘉美, 张丽萍, 谢招虎, 李兆福. 长链非编码RNA对急性痛风性关节炎相关信号通路的作用探讨[J]. 中华全科医学, 2022, 20(9): 1551-1554. doi: 10.16766/j.cnki.issn.1674-4152.002647
引用本文: 鲍艳媛, 郗域江, 高嘉美, 张丽萍, 谢招虎, 李兆福. 长链非编码RNA对急性痛风性关节炎相关信号通路的作用探讨[J]. 中华全科医学, 2022, 20(9): 1551-1554. doi: 10.16766/j.cnki.issn.1674-4152.002647
BAO Yan-yuan, XI Yu-jiang, GAO Jia-mei, ZHANG Li-ping, XIE Zhao-hu, LI Zhao-fu. Role of long noncoding RNA on signaling pathways related to acute gout arthritis[J]. Chinese Journal of General Practice, 2022, 20(9): 1551-1554. doi: 10.16766/j.cnki.issn.1674-4152.002647
Citation: BAO Yan-yuan, XI Yu-jiang, GAO Jia-mei, ZHANG Li-ping, XIE Zhao-hu, LI Zhao-fu. Role of long noncoding RNA on signaling pathways related to acute gout arthritis[J]. Chinese Journal of General Practice, 2022, 20(9): 1551-1554. doi: 10.16766/j.cnki.issn.1674-4152.002647

长链非编码RNA对急性痛风性关节炎相关信号通路的作用探讨

doi: 10.16766/j.cnki.issn.1674-4152.002647
基金项目: 

国家自然科学基金项目 81760868

详细信息
    通讯作者:

    李兆福, E-mail: lzf0817@126.com

  • 中图分类号: R589.7

Role of long noncoding RNA on signaling pathways related to acute gout arthritis

  • 摘要: 长链非编码RNA(long non-coding RNA, lncRNA)是通过调控邻近基因的表达来发挥作用的一类长度大于200个核苷酸的非编码RNA,无蛋白质编码功能,但是可以与蛋白质的多个位点结合,通过碱基互补配对原则与DNA、RNA发生特异性作用。近年来,随着基因检测技术的快速发展,lncRNA与多种免疫系统疾病的关系逐渐被人们所认识。痛风属于免疫系统疾病的范畴,因人体嘌呤代谢、尿酸生成与排泄异常,导致尿酸盐晶体沉积于组织或器官引发炎症反应,从而引起受累部位的剧烈疼痛,难以耐受。随着生活水平的提高和饮食结构的变化,痛风的发病率愈来愈高,严重影响患者的生活质量。目前,有研究指出,lncRNA与痛风的发病密切相关,痛风发作所涉及的炎症信号通路主要以Toll样受体(Toll-like receptors,TLRs)信号通路、Nod样受体蛋白3(Nod-like receptor protein 3)炎性小体信号通路及嘌呤受体P2X7(purinergic 2X7 receptor,P2X7R)信号通路为主,lncRNA除了通过调控免疫细胞参与痛风的发作,还通过影响上述信号通路发挥作用,本文主要就lncRNA与急性痛风性关节炎相关的信号通路及上述因子的关系进行探讨,进一步揭示痛风的发病机制,以期为痛风的防治提供新的方向。

     

  • [1] 李志军. 痛风及高尿酸血症的诊断与治疗[J]. 中华全科医学, 2020, 18(1): 5-6. http://www.zhqkyx.net/article/id/35702025-3b64-4c17-b820-044055abc76e

    LI Z J. Diagnosis and treatment of gout and hyperuricemia[J]. Chinese Journal of General Practice, 2020, 18(1): 5-6. http://www.zhqkyx.net/article/id/35702025-3b64-4c17-b820-044055abc76e
    [2] 赖爱云, 徐健, 陶丽. TNF-α在痛风性关节炎患者炎性反应中的变化及意义[J]. 河北医药, 2019, 41(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYZ201903015.htm

    LAI A Y, XU J, TAO L. Changes and significance of TNF-α in inflammatory reaction in patients with gouty arthritis[J]. Hebei Medical Journal, 2019, 41(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYZ201903015.htm
    [3] 朱克强, 王晨, 惠晓艳, 等. 肿瘤坏死因子α在痛风性关节炎发病机制中的作用研究进展[J]. 浙江医学, 2020, 42(6): 638-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202006037.htm

    ZHU K Q, WANG C, HUI X Y, et al. Advances in the role of tumor necrosis factor α in the pathogenesis of gout arthritis[J]. Zhejiang Medical Journal, 2020, 42(6): 638-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYE202006037.htm
    [4] DALBETH N, GOSLING A L, GAFFO A, et al. Gout[J]. Lancet, 2021, 397(10287): 1843-1855. doi: 10.1016/S0140-6736(21)00569-9
    [5] 高大玉, 张均雩, 李倩, 等. 痛风性关节炎急性发作期血尿下降的机制研究[J]. 医学研究生学报, 2022, 35(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202201013.htm

    GAO D Y, ZHANG Y Y, LI Q, et al. Mechanism of hematuria decline in acute gout arthritis[J]. Journal of Medical Postgraduates, 2022, 35(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYB202201013.htm
    [6] CHEN S L, CHEN J R, YANG S W. Painless gouty tophus in the nasal bridge: A case report and literature review[J]. Medicine (Baltimore), 2019, 98(11): e14850. DOI: 10.1097/MD.0000000000014850.
    [7] 夏雯洁, 张雅婷, 涂琳琳, 等. 长链非编码RNA作为自身免疫病生物标志物的研究进展[J]. 现代免疫学, 2022, 42(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202201010.htm

    XIA W J, ZHANG Y T, TU L L, et al. Research advances of long non-coding RNA as the biomarker for autoimmune diseases[J]. Current Immunology, 2022, 42(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202201010.htm
    [8] 周蜜, 王一飞, 袁佳沁, 等. 急性痛风性关节炎免疫学发病机制研究进展[J]. 世界临床药物, 2018, 39(11): 779-782. https://www.cnki.com.cn/Article/CJFDTOTAL-GWHH201811014.htm

    ZHOU M, WANG Y F, YUAN J Q, et al. Research progress on the immune-pathogenesis of acute gouty arthritis[J]. World Clinical Drugs, 2018, 39(11): 779-782. https://www.cnki.com.cn/Article/CJFDTOTAL-GWHH201811014.htm
    [9] 胡玉懿, 陈朴, 郭玮, 等. 髓样分化因子88多态性的研究进展[J]. 检验医学, 2020, 35(4): 380-386. doi: 10.3969/j.issn.1673-8640.2020.04.020

    HU Y Y, CHEN B, GUO W, et al. Research progress of myeloid differentiation factor 88 polymorphism[J]. Laboratory Medicine, 2020, 35(4): 380-386. doi: 10.3969/j.issn.1673-8640.2020.04.020
    [10] 王雪霖, 曹秀梅, 闫建设. 中性粒细胞胞外诱捕网在痛风性关节炎中的作用: 一枚硬币的两面[J]. 自然杂志, 2021, 43(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202102012.htm

    WANG X L, CAO X M, YAN J S. The role of neutrophil extracellular traps in gouty arthritis: two sides of the same coin[J]. Chinese Journal of Nature, 2021, 43(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202102012.htm
    [11] 冯华国, 冯毅, 张玲, 等. NLRPs炎性小体激活和调控机制研究现状[J]. 检验医学与临床, 2021, 18(20): 3048-3051. doi: 10.3969/j.issn.1672-9455.2021.20.036

    FENG H G, FENG Y, ZHANG L, et al. Current research on activation and regulation of NLRPs inflammasome[J]. Laboratory Medicine and Clinic, 2021, 18(20): 3048-3051. doi: 10.3969/j.issn.1672-9455.2021.20.036
    [12] MEYERS A K, ZHU X. The NLRP3 inflammasome: Metabolic regulation and contribution to inflammaging[J]. Cells, 2020, 9(8): 1808. doi: 10.3390/cells9081808
    [13] XIA X M, LU B, DONG W J, et al. Atypical gasdermin D and mixed lineage kinaxe domain-like protein leakage aggravates tetrachiorobenzoquinone-induce NOD-like receptoe protein 3 inflammasome activivation[J]. Chen Res Toxicol, 2018, 31(12): 1418-1425. doi: 10.1021/acs.chemrestox.8b00306
    [14] JIANG D Y, LI W H, REN P P, et al. Progress in the mechanism of purinergic receptor P2X, ligand-gated ion channel 7 and its downstrream molecules in gouty arthritis[J]. WJTCM, 2020, 15(8): 1221-1224.
    [15] QIA X Y, ZHAO J Y, YEUNG P Y, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52.
    [16] CORLEY M, BURNS M C, YEO G W. How RNA-binding proteins interact with RNA: Molecules and mechanisms[J]. Mol Cell, 2020, 78(1): 9-29.
    [17] 刘磊, 赵天仪, 曹灵, 等. 急性痛风自发性缓解机制研究进展[J]. 中华风湿病学杂志, 2018, 22(3): 208-211.

    LIU L, ZHAO T Y, CAO L, et al. Research progress on mechanism of spontaneous remission of acute gout[J]. Chinese Journal of Rheumatology, 2018, 22(3): 208-211.
    [18] ROBINSON E K, COVARRUBIAS S, CARPENTER S. The how and why of lncRNA function: An innate immune perspective[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4): 194419. DOI: 10.1016/j.bbagrm.2019.194419.
    [19] CHEN W X, LIU S N, WANG F. Potential impact and mechanism of Long Non-coding RNAs on cancer and associated T cells[J]. J Cancer, 2021, 12(16): 4873-4882.
    [20] ZHANG W, YANG M Y, YU L, et al. Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression[J]. Am J Reprod Immunol, 2020, 83(6): e13239. DOI: 10.1111/aji.13239.
    [21] JAFARI L, IZADIRAD M, VATANMAKANIAN M, et al. IFNG-AS1 and MAF4 long non-coding RNAs are upregulated in acute leukemia patients who underwent bone marrow transplantation[J]. Curr Res Transl Med, 2021, 69(4): 103307. DOI: 10.1016/j.retram.2021.103307.
    [22] LEE C P, HUANG Y N, Nithiyanantham S, et al. LncRNA-Jak3: Jak3 coexpressed pattern regulates monosodium urate crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression[J]. Environ Toxicol, 2019, 34(2): 179-187.
    [23] ZHANG Q, CHAO T C, PATIL V S, et al. The long noncoding RNA ROCKI regulates inflammatory gene expression[J]. EMBO J, 2019, 38(8): e100041. DOI: 10.15252/embj.2018100041.
    [24] LI J S, WANG M W, SONG L T, et al. LncRNA MALAT1 regulates inflammatory cytokine production in lipopolysaccharide-stimulated human gingival fibroblasts through sponging miR-20a and activating TLR4 pathway[J]. J Periodontal Res, 2020, 55(2): 182-190.
    [25] 潘显阳, 陶金辉, 李向培. 痛风性关节炎发病的炎性机制研究进展[J]. 安徽医科大学学报, 2021, 56(7): 1167-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202107032.htm

    PAN X Y, TAO J H, LI X P. Advances in the inflammatory mechanism of gout arthritis[J]. Acta Universitatis Medicinalis Anhui, 2021, 56(7): 1167-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YIKE202107032.htm
    [26] LIU C L, DENG Z Y, DU E R, et al. Long non coding RNA BC168687 small interfering RNA reduces high glucose and high free fatty acid induced expression of P2X7 receptors in satellite glial cells[J]. Mol Med Rep, 2018, 17(4): 5851-5859.
    [27] HUANG N, FAN Z D, MA L, et al. Long non coding RNA RP11 340F14.6 promotes a shift in the Th17/Treg ratio by binding with P2X7R in juvenile idiopathic arthritis[J]. Int J Mol Med, 2020, 46(2): 859-868.
    [28] HU J C, WU H, WANG D C, et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis[J]. Biochimie, 2018, 157(2): 102-110.
    [29] XUE Z Y, ZHANG Z M, LIU H K, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation[J]. Cell Death Differ, 2019, 26(1): 130-145.
    [30] YU H, LIN L B, ZHANG Z Q, et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209.
    [31] GUPTA S C, AWASTHEE N, RAI V, et al. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188316. DOI: 10.1016/j.bbcan.2019.188316.
    [32] WEI S B, LIU Q Y. Long noncoding RNA MALAT1 modulates sepsis-induced cardiac inflammation through the miR-150-5p/NF-κB axis[J]. Int J Clin Exp Pathol, 2019, 12(9): 3311-3319.
    [33] ZHANG P H, YU C L, YU J W, et al. Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription[J]. Cell Mol Life Sci, 2021, 78(5): 2387-2404.
    [34] MA M R, PEI Y F, WANG X X, et al. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway[J]. Cell Prolif, 2019, 52(1): e12525. DOI: 10.1111/cpr.12525.
    [35] CORREIA M, GJORGJIEVA M, DOLICKA D, et al. Deciphering miRNAs ' action through miRNA editing[J]. Int J Mol Sci, 2019, 20(24): 6249.
    [36] KANDELL W M, DONATELLI S S, TRINH T L, et al. MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma[J]. PLoS One, 2020, 15(2): e0225820. DOI: 10.1371/journal.pone.0225820.
    [37] ZHANG Q B, QING Y F, QIN C C, et al. Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome[J]. Arthritis Res Ther, 2018, 20(1): 45.
    [38] MA T, LIU X, CEN Z F, et al. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2[J]. Arthritis Res Ther, 2018, 20(1): 34.
    [39] ZHOU R S, ZHANG E X, SUN Q F, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue[J]. BMC Cancer, 2019, 19(1): 779.
    [40] 李林林, 吴聪. 长链非编码RNA在自身免疫性疾病中的研究进展[J]. 基础医学与临床, 2019, 39(4): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL201904023.htm

    LI L L, HAO C. Research progress of long noncoding RNAs in autoimmune diseases[J]. Basic & Clinical Medicine, 2019, 39(4): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYL201904023.htm
  • 加载中
计量
  • 文章访问数:  209
  • HTML全文浏览量:  86
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 网络出版日期:  2022-11-29

目录

    /

    返回文章
    返回