留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

慢性危重症的特点及预测因素研究进展

谢硕 李嘉欣 刘新民 焦红梅

谢硕, 李嘉欣, 刘新民, 焦红梅. 慢性危重症的特点及预测因素研究进展[J]. 中华全科医学, 2022, 20(9): 1555-1559. doi: 10.16766/j.cnki.issn.1674-4152.002648
引用本文: 谢硕, 李嘉欣, 刘新民, 焦红梅. 慢性危重症的特点及预测因素研究进展[J]. 中华全科医学, 2022, 20(9): 1555-1559. doi: 10.16766/j.cnki.issn.1674-4152.002648
XIE Shuo, LI Jia-xin, LIU Xin-min, JIAO Hong-mei. Characteristics and predictive factors of chronic critical illness[J]. Chinese Journal of General Practice, 2022, 20(9): 1555-1559. doi: 10.16766/j.cnki.issn.1674-4152.002648
Citation: XIE Shuo, LI Jia-xin, LIU Xin-min, JIAO Hong-mei. Characteristics and predictive factors of chronic critical illness[J]. Chinese Journal of General Practice, 2022, 20(9): 1555-1559. doi: 10.16766/j.cnki.issn.1674-4152.002648

慢性危重症的特点及预测因素研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002648
详细信息
    通讯作者:

    焦红梅, E-mail: jiaohm@139.com

  • 中图分类号: R592

Characteristics and predictive factors of chronic critical illness

  • 摘要: 随着现代循证医学的开展及医疗水平的提高,部分重症患者经治疗渡过了最初的急性疾病期存活下来,但仍存在持续的器官衰竭,需要长期依赖重症监护和脏器支持。这些患者经历持续的器官功能损害,甚至长期处于持续炎症、免疫抑制和分解代谢综合征状态,即进展到慢性危重症。慢性危重症容易出现身体、心理和认知相关的功能障碍,具有高死亡率和高致残率,这些患者的健康并没有得到保护,而是通过技术延长生存时间。往往存在住院时间较长、承受永久性残疾和严重的痛苦、生活质量降低,影响到患者整个家庭。目前慢性危重症的定义尚未统一,但标准都是以一定时间的住院时长加上严重的器官功能损害为基础。多国的流行病学调查均显示慢性危重症发病率逐年增加,且随着人口老龄化,已成为一个日益严重的全球性问题。目前开展了许多研究,在持续炎症、免疫抑制和分解代谢基础上探讨慢性危重症的发病机制及危险因素,预测慢性危重症的发展,以减轻慢性危重症对患者及家庭的影响。现将慢性危重症定义、流行病学、发病机制及预测因素的研究进展进行综述,以便临床医师更好地认识及预防慢性危重症,为慢性危重症的诊治提供参考,丰富慢性危重症患者的诊疗策略以进一步提高慢性危重症患者的生存质量。

     

  • [1] ROSENTHAL M D, KAMEL A Y, ROSENTHAL C M, et al. Chronic critical illness: Application of what we know[J]. Nutr Clin Pract, 2018, 33(1): 39-45. doi: 10.1002/ncp.10024
    [2] HESSELINK L, HOEPELMAN R J, SPIJKERMAN R, et al. Persistent inflammation, immunosuppression and catabolism syndrome (PICS) after polytrauma: A rare syndrome with major consequences[J]. J Clin Med, 2020, 9(1): 191. doi: 10.3390/jcm9010191
    [3] LOFTUS T J, MIRA J C, OZRAZGAT-BASLANTI T, et al. Sepsis and Critical Illness Research Center investigators: Protocols and standard operating procedures for a prospective cohort study of sepsis in critically ill surgical patients[J]. BMJ Open, 2017, 7(7): e015136. DOI: 10.1136/bmjopen-2016-015136.
    [4] STORTZ J A, MURPHY T J, RAYMOND S L, et al. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis[J]. Shock, 2018, 49(3): 249-258. doi: 10.1097/SHK.0000000000000981
    [5] MANKOWSKI R T, ANTON S D, GHITA G L, et al. Older adults demonstrate biomarker evidence of the persistent inflammation, immunosuppression, and catabolism syndrome (PICS) after sepsis[J]. J Gerontol A Biol Sci Med Sci, 2022, 77(1): 188-196. doi: 10.1093/gerona/glab080
    [6] LOSS S H, NUNES D S L, FRANZOSI O S, et al. Chronic critical illness: Are we saving patients or creating victims?[J]. Rev Bras Ter Intensiva, 2017, 29(1): 87-95.
    [7] GARDNER A K, GHITA G L, WANG Z, et al. The development of chronic critical illness determines physical function, quality of life, and long-term survival among early survivors of sepsis in surgical ICUs[J]. Crit Care Med, 2019, 47(4): 566-573. doi: 10.1097/CCM.0000000000003655
    [8] KAHN J M, LE T, ANGUS D C, et al. The epidemiology of chronic critical illness in the United States[J]. Crit Care Med, 2015, 43(2): 282-287. doi: 10.1097/CCM.0000000000000710
    [9] OHBE H, MATSUI H, FUSHIMI K, et al. Epidemiology of chronic critical illness in Japan: A nationwide inpatient database study[J]. Crit Care Med, 2021, 49(1): 70-78.
    [10] 李思澄, 吴婕, 于湘友, 等. 中国慢性危重症及外科相关慢性危重症的多中心横断面研究[J]. 中华胃肠外科杂志, 2019, 22(11): 1027-1033.

    LI S C, WU J, YU X Y, et al. A multicenter cross sectional study on chronic critical illness and surgery related chronic critical illness in China[J]. Chinese Journal of Gastrointestinal Surgery, 2019, 22(11): 1027-1033.
    [11] DENNING N L, AZIZ M, GURIEN S D, et al. DAMPs and NETs in sepsis[J]. Front Immunol, 2019, 10: 2536. doi: 10.3389/fimmu.2019.02536
    [12] HU Q Y, REN J A, WU J, et al. Elevated levels of plasma mitochondrial DNA are associated with clinical outcome in intra-abdominal infections caused by severe trauma[J]. Surg Infect (Larchmt), 2017, 18(5): 610-618. doi: 10.1089/sur.2016.276
    [13] RAYMOND S L, HOLDEN D C, MIRA J C, et al. Microbial recognition and danger signals in sepsis and trauma[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(10 Pt B): 2564-2573.
    [14] NOMELLINI V, KAPLAN L J, SIMS C A, et al. Chronic critical illness and persistent inflammation: What can we learn from the elderly, injured, septic, and malnourished?[J]. Shock, 2018, 49(1): 4-14. doi: 10.1097/SHK.0000000000000939
    [15] FENNER B P, DARDEN D B, KELLY L S, et al. Immunological endotyping of chronic critical illness after severe sepsis[J]. Front Med (Lausanne), 2021, 7: 616694. DOI: 10.3389/fmed.2020.616694.
    [16] STORTZ J A, MIRA J C, RAYMOND S L, et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients[J]. J Trauma Acute Care Surg, 2018, 84(2): 342-349. doi: 10.1097/TA.0000000000001758
    [17] RHODES A, EVANS L E, ALHAZZANI W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016[J]. Intensive Care Med, 2017, 43(3): 304-377. doi: 10.1007/s00134-017-4683-6
    [18] 李勇, 郭敏, 康英英. MicroRNA在甲状腺癌中的研究进展[J]. 中华全科医学, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337

    LI Y, GUO M, KANG Y Y. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351. doi: 10.16766/j.cnki.issn.1674-4152.002337
    [19] REITHMAIR M, BUSCHMANN D, MÄRTE M, et al. Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis[J]. J Cell Mol Med, 2017, 21(10): 2403-2411. doi: 10.1111/jcmm.13162
    [20] VEGLIA F, SANSEVIERO E, GABRILOVICH D I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. doi: 10.1038/s41577-020-00490-y
    [21] HEINE A, HELD S A E, SCHULTE-SCHREPPING J, et al. Generation and functional characterization of MDSC-like cells[J]. Oncoimmunology, 2017, 6(4): e1295203. DOI: 10.1080/2162402X.2017.1295203.
    [22] SHAH A, CHESTER-JONES M, DUTTON S J, et al. Intravenous iron to treat anaemia following critical care: A multicentre feasibility randomised trial[J]. Br J Anaesth, 2022, 128(2): 272-282. doi: 10.1016/j.bja.2021.11.010
    [23] ROSENTHAL M D, BALA T, WANG Z, et al. Chronic critical illness patients fail to respond to current evidence-based intensive care nutrition secondarily to persistent inflammation, immunosuppression, and catabolic syndrome[J]. JPEN J Parenter Enteral Nutr, 2020, 44(7): 1237-1249. doi: 10.1002/jpen.1794
    [24] BASTUG A, BODUR H, ERDOGAN S, et al. Clinical and laboratory features of COVID-19: Predictors of severe prognosis[J]. Int Immunopharmacol, 2020, 88: 106950. DOI: 10.1016/j.intimp.2020.106950.
    [25] HU C, CHEN K N, TANG X P. Prognostic value of preoperative controlling nutritional status in patients with glioblastoma[J]. Clin Neurol Neurosurg, 2020, 198: 106129. DOI: 10.1016/j.clineuro.2020.106129.
    [26] ROSENTHAL M D, VANZANT E L, MOORE F A. Chronic critical illness and PICS nutritional strategies[J]. J Clin Med, 2021, 10(11): 2294. doi: 10.3390/jcm10112294
    [27] PICCA A, LEZZA A M S, LEEUWENBURGH C, et al. Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders[J]. Rejuvenation Res, 2018, 21(4): 350-359. doi: 10.1089/rej.2017.1989
    [28] MIRA J C, BRAKENRIDGE S C, MOLDAWER L L, et al. Persistent inflammation, immunosuppression and catabolism syndrome[J]. Crit Care Clin, 2017, 33(2): 245-258. doi: 10.1016/j.ccc.2016.12.001
    [29] PAGE A, FLOWER L, PROWLE J, et al. Novel methods to identify and measure catabolism[J]. Curr Opin Crit Care, 2021, 27(4): 361-366. doi: 10.1097/MCC.0000000000000842
    [30] FERRIE S, TSANG E. Monitoring nutrition in critical illness: What can we use?[J]. Nutr Clin Pract, 2018, 33(1): 133-146.
    [31] HAINES R W, ZOLFAGHARI P, WAN Y, et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma[J]. Intensive Care Med, 2019, 45(12): 1718-1731. doi: 10.1007/s00134-019-05760-5
    [32] VOLBEDA M, HESSELS L, POSMA R A, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission[J]. J Crit Care, 2021, 63: 161-166. doi: 10.1016/j.jcrc.2020.09.017
    [33] ZHANG Z H, HO K M, GU H Q, et al. Defining persistent critical illness based on growth trajectories in patients with sepsis[J]. Crit Care, 2020, 24(1): 57.
    [34] FLOWER L, HAINES R W, MCNELLY A, et al. Effect of intermittent or continuous feeding and amino acid concentration on urea-to-creatinine ratio in critical illness[J]. JPEN J Parenter Enteral Nutr, 2022, 46(4): 789-797.
    [35] GUNST J, KASHANI K B, HERMANS G. The urea-creatinine ratio as a novel biomarker of critical illness-associated catabolism[J]. Intensive Care Med, 2019, 45(12): 1813-1815.
    [36] BARRETO E F, POYANT J O, COVILLE H H, et al. Validation of the sarcopenia index to assess muscle mass in the critically ill: A novel application of kidney function markers[J]. Clin Nutr, 2019, 38(3): 1362-1367.
    [37] RAVN B, PROWLE J R, MÁRTENSSON J, et al. Superiority of serum cystatin C over creatinine in prediction of long-term prognosis at discharge from ICU[J]. Crit Care Med, 2017, 45(9): e932-e940.
    [38] AMADO C A, RUIZ DE INFANTE M M. Sarcopenia index: More than an marker of muscle mass[J]. Clin Nutr, 2019, 38(3): 1479.
    [39] BUENDGENS L, YAGMUR E, BRUENSING J, et al. Growth differentiation factor-15 is a predictor of mortality in critically ill patients with sepsis[J]. Dis Markers, 2017, 2017: 5271203. DOI: 10.1155/2017/5271203.
    [40] PATEL S, ALVAREZ-GUAITA A, MELVIN A, et al. GDF15 Provides an endocrine signal of nutritional stress in mice and humans[J]. Cell Metab, 2019, 29(3): 707-718.
    [41] CHUNG H K, RYU D, KIM K S, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis[J]. J Cell Biol, 2017, 216(1): 149-165.
    [42] XIE Y P, LIU S X, ZHENG H, et al. Utility of plasma GDF-15 for diagnosis and prognosis assessment of ICU-Acquired weakness in mechanically ventilated patients: Prospective observational study[J]. Biomed Res Int, 2020, 2020: 3630568. DOI: 10.1155/2020/3630568.
    [43] BLOCH S A, LEE J Y, SYBURRA T, et al. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs[J]. Thorax, 2015, 70(3): 219-228.
  • 加载中
计量
  • 文章访问数:  477
  • HTML全文浏览量:  146
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-11-29

目录

    /

    返回文章
    返回