[1] |
中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001Subspecialty Group of Rhinology. Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery; Subspecialty Group of Rhinology. Society of Otorhinolaryngology Head and Neck Surgery. Chinese Medical Association. Chinese guidelines for diagnosis and treatment of chronic rhinosinusitis (2018)[J]. Chinese JOurnal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(2): 81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001
|
[2] |
YAO Y, XIE S M, YANG C G, et al. Biomarkers in the evaluation and management of chronic rhinosinusitis with nasal polyposis[J]. Eur Arch Otorhinolaryngol, 2017, 274(10): 3559-3566. doi: 10.1007/s00405-017-4547-2
|
[3] |
孙立薇, 朱冬冬, 孟粹达. 慢性鼻窦炎的内型研究及临床应用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(8): 765-768. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202008022.htmSUN L W, ZHU D D, MENG C D. The study and clinical application of the endotypes of chronic rhinosinusitis[J]. Journal of Clinical Otorhinolaryngology Head And Neck Surgery, 2020, 34(8): 765-768. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202008022.htm
|
[4] |
姚尧, 慕婷婷, 杨玉娟, 等. IL-36γ通过NF-κB通路调控慢性鼻窦炎伴鼻息肉组织重塑相关因子的表达[J]. 中国耳鼻咽喉头颈外科, 2021, 28(10): 613-617. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT202110004.htmYAO Y, MU T T, YANG Y J, et al. The effect of IL-36γon the expressions of tissue remodeling related factors in chronic rhinosinusitis with nasal polyps through NF-κB pathway[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2021, 28(10): 613-617. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT202110004.htm
|
[5] |
MARTIN M J, GARCIA-SANCHEZ A, ESTRAVIS M, et al. Genetics and epigenetics of nasal polyposis: A systematic review[J]. J Investig Allergol Clin Immunol, 2021, 31(3): 196-211. doi: 10.18176/jiaci.0673
|
[6] |
MUELLER S K. The Role of exosomes in the pathophysiology of chronic rhinosinusitis[J]. Front Cell Infect Microbiol, 2022, 11: 812920. DOI: 10.3389/fcimb.2021.812920.
|
[7] |
RADAJEWSKI K, KALIÑCZAK-GÓRNA P, ZDRENKA M, et al. Short term pre-operative oral corticosteroids-tissue remodeling in chronic rhinosinusitis with nasal polyps[J]. J Clin Med, 2021, 10(15): 3346. doi: 10.3390/jcm10153346
|
[8] |
LI M, KEENAN C R, LOPEZ-CAMPOS G, et al. A non-canonical pathway with potential for safer modulation of transforming growth factor-β1 in steroid-resistant airway diseases[J]. iScience, 2019, 12: 232-246. doi: 10.1016/j.isci.2019.01.023
|
[9] |
TODD J L, VINISKO R, LIU Y, et al. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort[J]. BMC Pulm Med, 2020, 20(1): 64. doi: 10.1186/s12890-020-1103-4
|
[10] |
刘明明, 李爱玲, 修瑞娟. 基质金属蛋白酶的研究进展[J]. 中国病理生理杂志, 2018, 34(10): 1914-1920. doi: 10.3969/j.issn.1000-4718.2018.10.029LIU M M, LI A L, XIU R J. Research progress on matrix metalloproteinases[J]. Chinese Journal of Pathophysiology, 2018, 34(10): 1914-1920. doi: 10.3969/j.issn.1000-4718.2018.10.029
|
[11] |
WU F, TIAN P, MA Y, et al. Reactive oxygen species are necessary for bleomycin A5-induced apoptosis and extracellular matrix elimination of nasal polyp-derived fibroblasts[J]. Ann Otol Rhinol Laryngol, 2019, 128(2): 135-144. doi: 10.1177/0003489418812905
|
[12] |
UM J Y, LEE S A, PARK J H, et al. Role of adenosine monophosphate-activated protein kinase on cell migration, matrix contraction, and matrix metalloproteinase-1 and matrix metalloproteinase-2 production in nasal polyp-derived fibroblasts[J]. Am J Rhinol Allergy, 2017, 31(6): 357-363. doi: 10.2500/ajra.2017.31.4477
|
[13] |
GUERRA G, TESTA D, SALZANO F A, et al. Expression of matrix metalloproteinases and their tissue inhibitors in chronic rhinosinusitis with nasal polyps: Etiopathogenesis and recurrence[J]. Ear Nose Throat J, 2021, 100(5_suppl): 597S-605S. doi: 10.1177/0145561319896635
|
[14] |
KIM D K, JIN H R, EUN K M, et al. The role of interleukin-33 in chronic rhinosinusitis[J]. Thorax, 2017, 72(7): 635-645. doi: 10.1136/thoraxjnl-2016-208772
|
[15] |
HUANG J C, CHEN X H, WANG Z Y, et al. Interleukin-17A expression correlated with the prognosis of chronic rhinosinusitis with nasal polyps and the anti-Interleukin-17A effect in a murine nasal polyps model[J]. ORL J Otorhinolaryngol Relat Spec, 2020, 82(5): 257-267. doi: 10.1159/000507865
|
[16] |
BORUK M, RAILWAH C, LORA A, et al. Elevated S100A9 expression in chronic rhinosinusitis coincides with elevated MMP production and proliferation in vitro[J]. Sci Rep, 2020, 10(1): 16350. doi: 10.1038/s41598-020-73480-8
|
[17] |
KIM B, LEE H J, IM N R, et al. Effect of matrix metalloproteinase inhibitor on disrupted E-cadherin after acid exposure in the human nasal epithelium[J]. Laryngoscope, 2018, 128(1): E1-E7. doi: 10.1002/lary.26932
|
[18] |
李霞, 常利红, 黄子真, 等. IL-19及其受体与慢性鼻-鼻窦炎组织重塑的相关性研究[J]. 中国病理生理杂志, 2017, 33(5): 919-924. doi: 10.3969/j.issn.1000-4718.2017.05.025LI X, CHANG L H, HUANG Z Z, et al. Correlation of IL-19 and its receptors with tissue remodeling in chronic rhinosinusitis[J]. Chinese Journal of Pathophysiology, 2017, 33(5): 919-924. doi: 10.3969/j.issn.1000-4718.2017.05.025
|
[19] |
伯铭羽, 王向东, 王鸿, 等. 重塑相关因子在慢性鼻窦炎的表达[J]. 首都医科大学学报, 2013, 34(6): 785-789. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYD201306002.htmBO M Y, WANG X D, WANG H, et al. Expression of remodeling associated factors in the tissue of chronic rhinosinusitis[J]. Journal of Capital Medical University, 2013, 34(6): 785-789. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYD201306002.htm
|
[20] |
MULUK N B, ARIKAN O K, ATASOY P, et al. The role of MMP-2, MMP-9, and TIMP-1 in the pathogenesis of nasal polyps: Immunohistochemical assessment at eight different levels in the epithelial, subepithelial, and deep layers of the mucosa[J]. Ear Nose Throat J, 2015, 94(4-5): E1-E13.
|
[21] |
LI X Y, MENG J, QIAO X M, et al. Expression of TGF, matrix metalloproteinases, and tissue inhibitors in Chinese chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2010, 125(5): 1061-1068. doi: 10.1016/j.jaci.2010.02.023
|
[22] |
TSUDA T, NISHIDE M, MAEDA Y, et al. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2020, 145(3): 843-854. doi: 10.1016/j.jaci.2019.12.893
|
[23] |
ZHANG Y Y, LOU H F, WANG Y, et al. Comparison of corticosteroids by 3 approaches to the treatment of chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2019, 11(4): 482-497. doi: 10.4168/aair.2019.11.4.482
|
[24] |
TSUDA T, MAEDA Y, NISHIDE M, et al. Eosinophil-derived neurotoxin enhances airway remodeling in eosinophilic chronic rhinosinusitis and correlates with disease severity[J]. Int Immunol, 2019, 31(1): 33-40. doi: 10.1093/intimm/dxy061
|
[25] |
FENG X, PAYNE S C, BORISH L, et al. Differential expression of extracellular matrix components in nasal polyp endotypes[J]. Am J Rhinol Allergy, 2019, 33(6): 665-670. doi: 10.1177/1945892419860634
|
[26] |
LORDA-DIEZ C I, DUARTE-OLIVENZA C, HURLE J M, et al. Transforming growth factor beta signaling: The master sculptor of fingers[J]. Dev Dyn, 2022, 251(1): 125-136.
|
[27] |
NARIKAWA M, UMEMURA M, TANAKA R, et al. Acute Hyperthermia inhibits TGF-β1-induced cardiac fibroblast activation via suppression of Akt signaling[J]. Sci Rep, 2018, 8(1): 6277. doi: 10.1038/s41598-018-24749-6
|
[28] |
JIANG W X, ZHOU C, MA C X, et al. TGF-β1 induces epithelial-to-mesenchymal transition in chronic rhinosinusitis with nasal polyps through microRNA-182[J]. Asian Pac J Allergy Immunol, 2021. DOI: 10.12932/AP-040921-1224.
|
[29] |
王彤, 臧洪瑞, 李云川, 等. Smad信号通路在慢性鼻-鼻窦炎伴鼻息肉和不伴鼻息肉的黏膜上皮修复机制中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201901003.htmWANG T, ZANG H R, LI Y C, et al. The role of Smad signaling pathway in the repair of mucosal epithelium in chronic sinusitis with nasal polyps and without nasal polyps[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2019, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201901003.htm
|
[30] |
KIM S J, PARK J H, LEE S A, et al. All-trans retinoic acid regulates TGF-β1-induced extracellular matrix production via p38, JNK, and NF-κB-signaling pathways in nasal polyp-derived fibroblasts[J]. Int Forum Allergy Rhinol, 2020, 10(5): 636-645. doi: 10.1002/alr.22525
|
[31] |
YAN B, WANG Y, LI Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi: 10.1002/alr.22243
|
[32] |
沙敏, 李勇, 李静. HGF与TGF-β1的平衡在慢性鼻窦炎组织重塑中的作用[J]. 中华全科医学, 2017, 15(4): 663-666. doi: 10.16766/j.cnki.issn.1674-4152.2017.04.037SHA M, LI Y, LI J. The balance of HGF and TGF-β1 in the remodeling of chronic rhinosinusitis[J]. Chinese Journal of General Practice, 2017, 15(4): 663-666. doi: 10.16766/j.cnki.issn.1674-4152.2017.04.037
|
[33] |
LAI Y T, ZHANG P Y, WANG H, et al. Serum and glucocorticoid-regulated kinase 1 regulates transforming growth factor β1-connective tissue growth factor pathway in chronic rhinosinusitis[J]. Clin Immunol, 2022, 234: 108895. DOI: 10.1016/j.clim,2021.108895.
|
[34] |
YANG H W, KIM H J, PARK J H, et al. Apigenin alleviates TGF-β1-induced nasal mucosa remodeling by inhibiting MAPK/NF-kB signaling pathways in chronic rhinosinusitis[J]. PLoS One, 2018, 13(8): e0201595. DOI: 10.1371/journal.pone.0201595.
|
[35] |
LYGEROS S, DANIELIDES G, GRAFANAKI K, et al. Matrix metalloproteinases and chronic rhinosinusitis with nasal polyposis. Unravelling a puzzle through a systematic review[J]. Rhinology, 2021, 59(3): 245-257.
|
[36] |
PARK J H, SHIN J M, YANG H W, et al. Cigarette smoke extract stimulates MMP-2 production in nasal fibroblasts via ROS/PI3K, Akt, and NF-κB signaling pathways[J]. Antioxidants (Basel), 2020, 9(8): 739. doi: 10.3390/antiox9080739
|
[37] |
DU K, WANG M, ZHANG N, et al. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs[J]. Clin Transl Allergy, 2021, 11(7): e12059. DOI: 10.1002/clt2.12059.
|
[38] |
LYGEROS S, DANIELIDES G, KYRIAKOPOULOS G C, et al. Evaluation of MMP-12 expression in chronic rhinosinusitis with nasal polyposis[J]. Rhinology, 2022, 60(1): 39-46.
|
[39] |
SHI L L, MA J, DENG Y K, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 497-509. doi: 10.1111/all.14287
|
[40] |
LEES K A, ORLANDI R R, OAKLEY G, ALT J A. The Role of macrolides and doxycycline in chronic rhinosinusitis[J]. Immunol Allergy Clin North Am, 2020, 40(2): 303-315. doi: 10.1016/j.iac.2019.12.005
|
[41] |
ANTONIO M A, MARSON F A L, TORO M D C, et al. Topical tretinoin in chronic rhinosinusitis with nasal polyps: A randomized clinical trial[J]. Int Forum Allergy Rhinol, 2021, 11(8): 1187-1196. doi: 10.1002/alr.22778
|
[42] |
KIM H J, PARK J H, SHIN J M, et al. Author Correction: TGF-β1-induced HSP47 regulates extracellular matrix accumulation via Smad2/3 signaling pathways in nasal fibroblasts[J]. Sci Rep, 2020, 10(1): 9585. doi: 10.1038/s41598-020-66547-z
|
[43] |
SHIEH J M, TSAI Y J, CHI J C, et al. TGFβ mediates collagen production in human CRSsNP nasal mucosa-derived fibroblasts through Smad2/3-dependent pathway and CTGF induction and secretion[J]. J Cell Physiol, 2019, 234(7): 10489-10499. doi: 10.1002/jcp.27718
|
[44] |
韩佳琦, 苑国庆, 朱宇彤, 等. 慢性鼻窦炎伴鼻息肉患者血清25-(OH)D3和组织中TGF-β1水平及临床意义[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYU202105004.htmHAN J Q, YUAN G Q, ZHU Y T, et al. Serum 25-(OH) D3 and tissue TGF-β1 levels in patients with chronic rhino sinusitis with nasal polyps and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYU202105004.htm
|