留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基质金属蛋白酶及抑制剂、转化生长因子β1对慢性鼻-鼻窦炎组织重塑的机制研究

常雪岩 周凌

常雪岩, 周凌. 基质金属蛋白酶及抑制剂、转化生长因子β1对慢性鼻-鼻窦炎组织重塑的机制研究[J]. 中华全科医学, 2022, 20(11): 1920-1924. doi: 10.16766/j.cnki.issn.1674-4152.002736
引用本文: 常雪岩, 周凌. 基质金属蛋白酶及抑制剂、转化生长因子β1对慢性鼻-鼻窦炎组织重塑的机制研究[J]. 中华全科医学, 2022, 20(11): 1920-1924. doi: 10.16766/j.cnki.issn.1674-4152.002736
CHANG Xue-yan, ZHOU Ling. Mechanism of matrix metalloproteinases and inhibitors, transforming growth factors β1 on the tissue remodelling in chronic rhinosinusitis[J]. Chinese Journal of General Practice, 2022, 20(11): 1920-1924. doi: 10.16766/j.cnki.issn.1674-4152.002736
Citation: CHANG Xue-yan, ZHOU Ling. Mechanism of matrix metalloproteinases and inhibitors, transforming growth factors β1 on the tissue remodelling in chronic rhinosinusitis[J]. Chinese Journal of General Practice, 2022, 20(11): 1920-1924. doi: 10.16766/j.cnki.issn.1674-4152.002736

基质金属蛋白酶及抑制剂、转化生长因子β1对慢性鼻-鼻窦炎组织重塑的机制研究

doi: 10.16766/j.cnki.issn.1674-4152.002736
基金项目: 

国家自然科学基金项目 8187152123

详细信息
    通讯作者:

    周凌, E-mail: zhouling8913@163.com

  • 中图分类号: R765.21 R765.41

Mechanism of matrix metalloproteinases and inhibitors, transforming growth factors β1 on the tissue remodelling in chronic rhinosinusitis

  • 摘要: 慢性鼻-鼻窦炎(chronic rhinosinusitis, CRS)常以鼻塞、流黏或脓涕、头痛等为主要临床表现,影响日常生活质量,且因其发病机制尚不明确,缺乏准确有效的治疗方法,患者常需进行反复或多种方法联合治疗,这造成了较大的心理负担和经济负担。组织重塑理论是国内外均已认可的慢性鼻-鼻窦炎发病的主要机理,其中细胞外基质(extracellular matrix,ECM)的生成和降解发生失衡是组织重塑的重要特点之一,而CRS不同亚型的组织重塑机理也并不相同,这是由于不同亚型中基质金属蛋白酶(matrix metalloproteinases,MMPs)及其抑制剂(tissue inhibitor of metalloproteinase,TIMPs)表达并不相同。基质金属蛋白酶及其抑制剂除单独影响ECM来参与CRS组织重塑,还通过其摩尔比值来影响ECM代谢以此参与CRS组织重塑。转化生长因子β1(transforming growth factor-β1,TGF-β1)除直接刺激各种通路及细胞因子来影响组织重塑,还可通过TGF-β1/Smad通路来影响ECM代谢,以此参与CRS组织重塑。本文对MMPs、TIMPs、TGF-β1结构及对CRS组织重塑的机制进行综述。

     

  • [1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001

    Subspecialty Group of Rhinology. Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery; Subspecialty Group of Rhinology. Society of Otorhinolaryngology Head and Neck Surgery. Chinese Medical Association. Chinese guidelines for diagnosis and treatment of chronic rhinosinusitis (2018)[J]. Chinese JOurnal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(2): 81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001
    [2] YAO Y, XIE S M, YANG C G, et al. Biomarkers in the evaluation and management of chronic rhinosinusitis with nasal polyposis[J]. Eur Arch Otorhinolaryngol, 2017, 274(10): 3559-3566. doi: 10.1007/s00405-017-4547-2
    [3] 孙立薇, 朱冬冬, 孟粹达. 慢性鼻窦炎的内型研究及临床应用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(8): 765-768. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202008022.htm

    SUN L W, ZHU D D, MENG C D. The study and clinical application of the endotypes of chronic rhinosinusitis[J]. Journal of Clinical Otorhinolaryngology Head And Neck Surgery, 2020, 34(8): 765-768. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202008022.htm
    [4] 姚尧, 慕婷婷, 杨玉娟, 等. IL-36γ通过NF-κB通路调控慢性鼻窦炎伴鼻息肉组织重塑相关因子的表达[J]. 中国耳鼻咽喉头颈外科, 2021, 28(10): 613-617. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT202110004.htm

    YAO Y, MU T T, YANG Y J, et al. The effect of IL-36γon the expressions of tissue remodeling related factors in chronic rhinosinusitis with nasal polyps through NF-κB pathway[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2021, 28(10): 613-617. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT202110004.htm
    [5] MARTIN M J, GARCIA-SANCHEZ A, ESTRAVIS M, et al. Genetics and epigenetics of nasal polyposis: A systematic review[J]. J Investig Allergol Clin Immunol, 2021, 31(3): 196-211. doi: 10.18176/jiaci.0673
    [6] MUELLER S K. The Role of exosomes in the pathophysiology of chronic rhinosinusitis[J]. Front Cell Infect Microbiol, 2022, 11: 812920. DOI: 10.3389/fcimb.2021.812920.
    [7] RADAJEWSKI K, KALIÑCZAK-GÓRNA P, ZDRENKA M, et al. Short term pre-operative oral corticosteroids-tissue remodeling in chronic rhinosinusitis with nasal polyps[J]. J Clin Med, 2021, 10(15): 3346. doi: 10.3390/jcm10153346
    [8] LI M, KEENAN C R, LOPEZ-CAMPOS G, et al. A non-canonical pathway with potential for safer modulation of transforming growth factor-β1 in steroid-resistant airway diseases[J]. iScience, 2019, 12: 232-246. doi: 10.1016/j.isci.2019.01.023
    [9] TODD J L, VINISKO R, LIU Y, et al. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort[J]. BMC Pulm Med, 2020, 20(1): 64. doi: 10.1186/s12890-020-1103-4
    [10] 刘明明, 李爱玲, 修瑞娟. 基质金属蛋白酶的研究进展[J]. 中国病理生理杂志, 2018, 34(10): 1914-1920. doi: 10.3969/j.issn.1000-4718.2018.10.029

    LIU M M, LI A L, XIU R J. Research progress on matrix metalloproteinases[J]. Chinese Journal of Pathophysiology, 2018, 34(10): 1914-1920. doi: 10.3969/j.issn.1000-4718.2018.10.029
    [11] WU F, TIAN P, MA Y, et al. Reactive oxygen species are necessary for bleomycin A5-induced apoptosis and extracellular matrix elimination of nasal polyp-derived fibroblasts[J]. Ann Otol Rhinol Laryngol, 2019, 128(2): 135-144. doi: 10.1177/0003489418812905
    [12] UM J Y, LEE S A, PARK J H, et al. Role of adenosine monophosphate-activated protein kinase on cell migration, matrix contraction, and matrix metalloproteinase-1 and matrix metalloproteinase-2 production in nasal polyp-derived fibroblasts[J]. Am J Rhinol Allergy, 2017, 31(6): 357-363. doi: 10.2500/ajra.2017.31.4477
    [13] GUERRA G, TESTA D, SALZANO F A, et al. Expression of matrix metalloproteinases and their tissue inhibitors in chronic rhinosinusitis with nasal polyps: Etiopathogenesis and recurrence[J]. Ear Nose Throat J, 2021, 100(5_suppl): 597S-605S. doi: 10.1177/0145561319896635
    [14] KIM D K, JIN H R, EUN K M, et al. The role of interleukin-33 in chronic rhinosinusitis[J]. Thorax, 2017, 72(7): 635-645. doi: 10.1136/thoraxjnl-2016-208772
    [15] HUANG J C, CHEN X H, WANG Z Y, et al. Interleukin-17A expression correlated with the prognosis of chronic rhinosinusitis with nasal polyps and the anti-Interleukin-17A effect in a murine nasal polyps model[J]. ORL J Otorhinolaryngol Relat Spec, 2020, 82(5): 257-267. doi: 10.1159/000507865
    [16] BORUK M, RAILWAH C, LORA A, et al. Elevated S100A9 expression in chronic rhinosinusitis coincides with elevated MMP production and proliferation in vitro[J]. Sci Rep, 2020, 10(1): 16350. doi: 10.1038/s41598-020-73480-8
    [17] KIM B, LEE H J, IM N R, et al. Effect of matrix metalloproteinase inhibitor on disrupted E-cadherin after acid exposure in the human nasal epithelium[J]. Laryngoscope, 2018, 128(1): E1-E7. doi: 10.1002/lary.26932
    [18] 李霞, 常利红, 黄子真, 等. IL-19及其受体与慢性鼻-鼻窦炎组织重塑的相关性研究[J]. 中国病理生理杂志, 2017, 33(5): 919-924. doi: 10.3969/j.issn.1000-4718.2017.05.025

    LI X, CHANG L H, HUANG Z Z, et al. Correlation of IL-19 and its receptors with tissue remodeling in chronic rhinosinusitis[J]. Chinese Journal of Pathophysiology, 2017, 33(5): 919-924. doi: 10.3969/j.issn.1000-4718.2017.05.025
    [19] 伯铭羽, 王向东, 王鸿, 等. 重塑相关因子在慢性鼻窦炎的表达[J]. 首都医科大学学报, 2013, 34(6): 785-789. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYD201306002.htm

    BO M Y, WANG X D, WANG H, et al. Expression of remodeling associated factors in the tissue of chronic rhinosinusitis[J]. Journal of Capital Medical University, 2013, 34(6): 785-789. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYD201306002.htm
    [20] MULUK N B, ARIKAN O K, ATASOY P, et al. The role of MMP-2, MMP-9, and TIMP-1 in the pathogenesis of nasal polyps: Immunohistochemical assessment at eight different levels in the epithelial, subepithelial, and deep layers of the mucosa[J]. Ear Nose Throat J, 2015, 94(4-5): E1-E13.
    [21] LI X Y, MENG J, QIAO X M, et al. Expression of TGF, matrix metalloproteinases, and tissue inhibitors in Chinese chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2010, 125(5): 1061-1068. doi: 10.1016/j.jaci.2010.02.023
    [22] TSUDA T, NISHIDE M, MAEDA Y, et al. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2020, 145(3): 843-854. doi: 10.1016/j.jaci.2019.12.893
    [23] ZHANG Y Y, LOU H F, WANG Y, et al. Comparison of corticosteroids by 3 approaches to the treatment of chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2019, 11(4): 482-497. doi: 10.4168/aair.2019.11.4.482
    [24] TSUDA T, MAEDA Y, NISHIDE M, et al. Eosinophil-derived neurotoxin enhances airway remodeling in eosinophilic chronic rhinosinusitis and correlates with disease severity[J]. Int Immunol, 2019, 31(1): 33-40. doi: 10.1093/intimm/dxy061
    [25] FENG X, PAYNE S C, BORISH L, et al. Differential expression of extracellular matrix components in nasal polyp endotypes[J]. Am J Rhinol Allergy, 2019, 33(6): 665-670. doi: 10.1177/1945892419860634
    [26] LORDA-DIEZ C I, DUARTE-OLIVENZA C, HURLE J M, et al. Transforming growth factor beta signaling: The master sculptor of fingers[J]. Dev Dyn, 2022, 251(1): 125-136.
    [27] NARIKAWA M, UMEMURA M, TANAKA R, et al. Acute Hyperthermia inhibits TGF-β1-induced cardiac fibroblast activation via suppression of Akt signaling[J]. Sci Rep, 2018, 8(1): 6277. doi: 10.1038/s41598-018-24749-6
    [28] JIANG W X, ZHOU C, MA C X, et al. TGF-β1 induces epithelial-to-mesenchymal transition in chronic rhinosinusitis with nasal polyps through microRNA-182[J]. Asian Pac J Allergy Immunol, 2021. DOI: 10.12932/AP-040921-1224.
    [29] 王彤, 臧洪瑞, 李云川, 等. Smad信号通路在慢性鼻-鼻窦炎伴鼻息肉和不伴鼻息肉的黏膜上皮修复机制中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201901003.htm

    WANG T, ZANG H R, LI Y C, et al. The role of Smad signaling pathway in the repair of mucosal epithelium in chronic sinusitis with nasal polyps and without nasal polyps[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2019, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201901003.htm
    [30] KIM S J, PARK J H, LEE S A, et al. All-trans retinoic acid regulates TGF-β1-induced extracellular matrix production via p38, JNK, and NF-κB-signaling pathways in nasal polyp-derived fibroblasts[J]. Int Forum Allergy Rhinol, 2020, 10(5): 636-645. doi: 10.1002/alr.22525
    [31] YAN B, WANG Y, LI Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi: 10.1002/alr.22243
    [32] 沙敏, 李勇, 李静. HGF与TGF-β1的平衡在慢性鼻窦炎组织重塑中的作用[J]. 中华全科医学, 2017, 15(4): 663-666. doi: 10.16766/j.cnki.issn.1674-4152.2017.04.037

    SHA M, LI Y, LI J. The balance of HGF and TGF-β1 in the remodeling of chronic rhinosinusitis[J]. Chinese Journal of General Practice, 2017, 15(4): 663-666. doi: 10.16766/j.cnki.issn.1674-4152.2017.04.037
    [33] LAI Y T, ZHANG P Y, WANG H, et al. Serum and glucocorticoid-regulated kinase 1 regulates transforming growth factor β1-connective tissue growth factor pathway in chronic rhinosinusitis[J]. Clin Immunol, 2022, 234: 108895. DOI: 10.1016/j.clim,2021.108895.
    [34] YANG H W, KIM H J, PARK J H, et al. Apigenin alleviates TGF-β1-induced nasal mucosa remodeling by inhibiting MAPK/NF-kB signaling pathways in chronic rhinosinusitis[J]. PLoS One, 2018, 13(8): e0201595. DOI: 10.1371/journal.pone.0201595.
    [35] LYGEROS S, DANIELIDES G, GRAFANAKI K, et al. Matrix metalloproteinases and chronic rhinosinusitis with nasal polyposis. Unravelling a puzzle through a systematic review[J]. Rhinology, 2021, 59(3): 245-257.
    [36] PARK J H, SHIN J M, YANG H W, et al. Cigarette smoke extract stimulates MMP-2 production in nasal fibroblasts via ROS/PI3K, Akt, and NF-κB signaling pathways[J]. Antioxidants (Basel), 2020, 9(8): 739. doi: 10.3390/antiox9080739
    [37] DU K, WANG M, ZHANG N, et al. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs[J]. Clin Transl Allergy, 2021, 11(7): e12059. DOI: 10.1002/clt2.12059.
    [38] LYGEROS S, DANIELIDES G, KYRIAKOPOULOS G C, et al. Evaluation of MMP-12 expression in chronic rhinosinusitis with nasal polyposis[J]. Rhinology, 2022, 60(1): 39-46.
    [39] SHI L L, MA J, DENG Y K, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 497-509. doi: 10.1111/all.14287
    [40] LEES K A, ORLANDI R R, OAKLEY G, ALT J A. The Role of macrolides and doxycycline in chronic rhinosinusitis[J]. Immunol Allergy Clin North Am, 2020, 40(2): 303-315. doi: 10.1016/j.iac.2019.12.005
    [41] ANTONIO M A, MARSON F A L, TORO M D C, et al. Topical tretinoin in chronic rhinosinusitis with nasal polyps: A randomized clinical trial[J]. Int Forum Allergy Rhinol, 2021, 11(8): 1187-1196. doi: 10.1002/alr.22778
    [42] KIM H J, PARK J H, SHIN J M, et al. Author Correction: TGF-β1-induced HSP47 regulates extracellular matrix accumulation via Smad2/3 signaling pathways in nasal fibroblasts[J]. Sci Rep, 2020, 10(1): 9585. doi: 10.1038/s41598-020-66547-z
    [43] SHIEH J M, TSAI Y J, CHI J C, et al. TGFβ mediates collagen production in human CRSsNP nasal mucosa-derived fibroblasts through Smad2/3-dependent pathway and CTGF induction and secretion[J]. J Cell Physiol, 2019, 234(7): 10489-10499. doi: 10.1002/jcp.27718
    [44] 韩佳琦, 苑国庆, 朱宇彤, 等. 慢性鼻窦炎伴鼻息肉患者血清25-(OH)D3和组织中TGF-β1水平及临床意义[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYU202105004.htm

    HAN J Q, YUAN G Q, ZHU Y T, et al. Serum 25-(OH) D3 and tissue TGF-β1 levels in patients with chronic rhino sinusitis with nasal polyps and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYU202105004.htm
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  57
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 网络出版日期:  2022-12-30

目录

    /

    返回文章
    返回