留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

儿童疫苗接种和热性惊厥相关性研究进展

俞栋 邵晓丽

俞栋, 邵晓丽. 儿童疫苗接种和热性惊厥相关性研究进展[J]. 中华全科医学, 2022, 20(11): 1930-1933. doi: 10.16766/j.cnki.issn.1674-4152.002738
引用本文: 俞栋, 邵晓丽. 儿童疫苗接种和热性惊厥相关性研究进展[J]. 中华全科医学, 2022, 20(11): 1930-1933. doi: 10.16766/j.cnki.issn.1674-4152.002738
YU Dong, SHAO Xiao-li. Research progress on the correlation between childhood vaccination and febrile convulsion[J]. Chinese Journal of General Practice, 2022, 20(11): 1930-1933. doi: 10.16766/j.cnki.issn.1674-4152.002738
Citation: YU Dong, SHAO Xiao-li. Research progress on the correlation between childhood vaccination and febrile convulsion[J]. Chinese Journal of General Practice, 2022, 20(11): 1930-1933. doi: 10.16766/j.cnki.issn.1674-4152.002738

儿童疫苗接种和热性惊厥相关性研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002738
基金项目: 

浙江省医药卫生科技计划项目 2020KY327

浙江省医药卫生科技计划项目 2017KY660

绍兴市人民医院青年科研基金项目 2022YB14

绍兴市人民医院青年科研基金项目 2019YB24

详细信息
    通讯作者:

    邵晓丽, E-mail: nuannuan717@126.com

  • 中图分类号: R186  R720.597

Research progress on the correlation between childhood vaccination and febrile convulsion

  • 摘要: 目前我国儿童预防接种疫苗已全面普及,而疫苗接种不良反应也不断出现,受到社会普遍关注。疫苗让人体产生免疫力的同时,极小部分可引起人体不良反应,例如发热、局部红肿硬结、过敏性水肿、休克及喉头水肿等。发热是最常见的不良反应,大部分儿童对于疫苗引起的发热可以耐受,然而小部分儿童接种疫苗后可能会出现热性惊厥这类严重的不良反应。热性惊厥(febrile seizures, FS)好发于年龄为3个月~6岁的儿童,此时期是儿童接种疫苗的主要时期。热性惊厥是影响国内外儿童预防接种普及的重要原因之一。现研究认为热性惊厥主要由遗传、环境等多因素引起,且部分研究认为热性惊厥的发生与体内细胞因子水平的变化有关。疫苗接种可引起体内细胞因子水平变化,如白细胞介素-1、白细胞介素-6等,且不同疫苗导致的细胞因子水平变化情况可能不一样。疫苗接种后导致发热,可能引起部分热敏感相关的癫痫综合征的发作,例如Dravet综合征。本文通过免疫和遗传因素2个方面对儿童疫苗接种与热性惊厥的相关性进行综述,从而正确认识疫苗接种对儿童热性惊厥发生的影响,为惊厥儿童的预防接种提供一些建议与指导。

     

  • [1] STEFANIZZI P, STELLA P, ANCONA D, et al. Adverse events following measles-mumps-rubella-varicella vaccination and the case of seizures: A post marketing active surveillance in Puglia Italian Region, 2017-2018[J]. Vaccines (Basel), 2019, 7(4): 140. doi: 10.3390/vaccines7040140
    [2] 陈才, 吴丽萍, 安斌斌, 等. 新生儿接种卡介苗后不良反应的临床特征及其相关因素探讨[J]. 中国基层医药, 2020, 27(9): 1124-1127. doi: 10.3760/cma.j.issn.1008-6706.2020.09.021

    CHEN C, WU L P, AN B B, et al. Clinical characteristics and related factors of adverse reactions after neonatal vaccination with BCG[J]. Chinese Journal of Primary Medicine and Pharmacy, 2020, 27(9): 1124-1127. doi: 10.3760/cma.j.issn.1008-6706.2020.09.021
    [3] 弓高云, 刘芬, 李金荣. 动态脑电图联合NSE检测对复杂性与单纯性热性惊厥患儿的鉴别诊断价值[J]. 安徽医学, 2018, 39(4): 453-455. doi: 10.3969/j.issn.1000-0399.2018.04.021

    GONG G Y, LIU F, LI J R. Value of ambulate electroencephalogram combined with NSE detection in the differential diagnosis of children with complex and simple febrile convulsion[J]. Anhui Medical Journal, 2018, 39(4): 453-455. doi: 10.3969/j.issn.1000-0399.2018.04.021
    [4] LI X, LIN Y, YAO G, et al. The influence of vaccine on febrile seizure[J]. Curr Neuropharmacol, 2018, 16(1): 59-65.
    [5] 张丽娜, 李克莉, 杜雯, 等. 2018年中国疑似预防接种异常反应监测[J]. 中国疫苗和免疫, 2020, 26(4): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJM202004002.htm

    ZHANG L N, LI K L, DU W, et al. Surveillance of adverse events following immunization in China, 2018[J]. Chinese Journal of Vaccines and Immunization, 2020, 26(4): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJM202004002.htm
    [6] HUPPERTZ H I. Recommendations on the approach when unusual neurological symptoms occur in temporal association with vaccinations in childhood and adolescence[J]. Monatsschr Kinderheilkd, 2021, 169(1): 62-68. doi: 10.1007/s00112-020-00975-z
    [7] DENG L, WOOD N, MACARTNEY K, et al. Developmental outcomes following vaccine-proximate febrile seizures in children[J]. Neurology, 2020, 95(3): 226-238. doi: 10.1212/WNL.0000000000009876
    [8] MOSILI P, MAIKOO S, MABANDLA M V, et al. The pathogenesis of fever-induced febrile seizures and its current state[J]. Neurosci Insights, 2020, 11(2): 1-7.
    [9] CHEN Q L, LI M M, ZHANG X, et al. Association between interleukin-6 gene polymorphisms and febrile seizure risk: A meta-analysis[J]. Medicine (Baltimore), 2019, 98(39): e17167. DOI: 10.1097/MD.0000000000017167.
    [10] DINARELLO C A. Overview of the IL-1 family in innate inflammation and acquired immunity[J]. Immunol Rev, 2018, 281(1): 8-27. doi: 10.1111/imr.12621
    [11] MANTOVANI A, DINARELLO C A, MOLGORA M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795. doi: 10.1016/j.immuni.2019.03.012
    [12] DA SILVA ANTUNES R, SOLDEVILA F, POMAZNOY M, et al. Systems view of Bordetella pertussis booster vaccination in adults primed with whole-cell vs. acellular vaccine[J]. JCI Insight, 2021. DOI: 10.1172/jci.insight.141023.
    [13] HUANG K, TAO S, ZHOU X F, et al. Incidence rates of health outcomes of interest among Chinese children exposed to selected vaccines in Yinzhou electronic health records: A population-based retrospective cohort study[J]. Vaccine, 2020, 38(18): 3422-3428. doi: 10.1016/j.vaccine.2020.03.013
    [14] NERGIZ M E, YETISGIN H, AYDIN A, et al. An infant who suffered seizures many times after pentavalent vaccination: A case report[J]. North Clin Istanb, 2020, 7(3): 302-304.
    [15] 赵燕凤, 张志群, 芦蕙, 等. PCT、白蛋白及IL-6水平检测在早产儿感染中的应用价值[J]. 中华全科医学, 2017, 15(1): 85-87. doi: 10.16766/j.cnki.issn.1674-4152.2017.01.027

    ZHAO Y F, ZHANG Z Q, LU H, et al. Role of procalcitonin, albumin and interleukin-6 levels in diagnosis of infections in preterm infants[J]. Chinese Journal of General Practice, 2017, 15(1): 85-87. doi: 10.16766/j.cnki.issn.1674-4152.2017.01.027
    [16] NARAZAKI M, KISHIMOTO T. The two-faced cytokine IL-6 in host defense and diseases[J]. Int J Mol Sci, 2018, 19(11): 3528. doi: 10.3390/ijms19113528
    [17] JORDAN S C, CHOI J, KIM I, et al. Interleukin-6, A cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: Therapeutic implications of IL-6 receptor blockade[J]. Transplantation, 2017, 101(1): 32-44. doi: 10.1097/TP.0000000000001452
    [18] SEKIYA T, MIFSUD E J, OHNO M, et al. Inactivated whole virus particle vaccine with potent immunogenicity and limited IL-6 induction is ideal for influenza[J]. Vaccine, 2019, 37(15): 2158-2166. doi: 10.1016/j.vaccine.2019.02.057
    [19] BERKE K, SUN P, ONG E, et al. VaximmutorDB: A web-based vaccine immune factor database and its application for understanding vaccine-induced immune mechanisms[J]. Front Immunol, 2021, 12(3): 639491. DOI: 10.3389/fimmu.2021.639491.
    [20] MANCHA-AGRESTI P, DE CASTRO C P, DOS S J, et al. Recombinant invasive lactococcus lactis carrying a DNA vaccine coding the Ag85A antigen increases INF-gamma, IL-6, and TNF-alpha cytokines after intranasal immunization[J]. Front Microbiol, 2017, 8(11): 1263.
    [21] FARSAKOGLU Y, PALOMINO-SEGURA M, LATINO I, et al. Influenza vaccination induces NK-Cell-Mediated Type-Ⅱ IFN response that regulates humoral immunity in an IL-6-dependent manner[J]. Cell Rep, 2019, 26(9): 2307-2315. doi: 10.1016/j.celrep.2019.01.104
    [22] BLACKWOOD C B, SEN-KILIC E, BOEHM D T, et al. Innate and adaptive immune responses against bordetella pertussis and pseudomonas aeruginosa in a murine model of mucosal vaccination against respiratory infection[J]. Vaccines (Basel), 2020, 8(4): 647. doi: 10.3390/vaccines8040647
    [23] 邵晓丽, 胡佳妮, 姚银萍, 等. 遗传性癫痫伴热性惊厥附加症患儿的疫苗接种风险分析[J]. 中华神经医学杂志, 2020, 19(2): 176-177, 180. doi: 10.3760/cma.j.issn.1671-8925.2020.02.011

    SHAO X L, HU J N, YAO Y P, et al. Risk analysis of vaccination in children with genetic epilepsy combined with febrile seizures plus[J]. Chinese Journal of Neuromedicine, 2020, 19(2): 176-177, 180. doi: 10.3760/cma.j.issn.1671-8925.2020.02.011
    [24] PETKAR K C, PATIL S M, CHAVHAN S S, et al. An Overview of nanocarrier-based adjuvants for vaccine delivery[J]. Pharmaceutics, 2021, 13(4): 455. doi: 10.3390/pharmaceutics13040455
    [25] BASTOLA R, NOH G, KEUM T, et al. Vaccine adjuvants: Smart components to boost the immune system[J]. Arch Pharm Res, 2017, 40(11): 1238-1248. doi: 10.1007/s12272-017-0969-z
    [26] MAYA S, PRAKASH T, GOLI D. Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: Relevance to sporadic amyotrophic lateral sclerosis[J]. Eur J Pharmacol, 2018, 835: 41-51. doi: 10.1016/j.ejphar.2018.07.058
    [27] KLEIN N P, LEWIS E, MCDONALD J, et al. Risk factors and familial clustering for fever 7-10 days after the first dose of measles vaccines[J]. Vaccine, 2017, 35(12): 1615-1621. doi: 10.1016/j.vaccine.2017.02.013
    [28] GVOZDENOVIC E, VETTER V, WILLAME C, et al. Impact of history of febrile convulsions on the risk difference of febrile convulsions with the tetravalent measles-mumps-rubella-varicella vaccine: Post-hoc exploratory analysis of results from a matched-cohort study[J]. Vaccine, 2018, 36(39): 5803-5806. doi: 10.1016/j.vaccine.2018.08.018
    [29] KLEIN N P, ZERBO O, GODDARD K, et al. Genetic associations with a fever after measles-containing vaccines[J]. Hum Vaccin Immunother, 2021, 17(6): 1763-1769. doi: 10.1080/21645515.2020.1849520
    [30] DE LISO P, PIRONI V, MASTRANGELO M, et al. Fatal status epilepticus in Dravet syndrome[J]. Brain Sci, 2020, 10(11): 889. doi: 10.3390/brainsci10110889
    [31] DENG L, DANCHIN M, LEWIS G, et al. Revaccination outcomes of children with vaccine proximate seizures[J]. Vaccine, 2021, 39(11): 1565-1571. doi: 10.1016/j.vaccine.2021.02.016
    [32] AUVIN S, JELJELI M, DESNOUS B, et al. Altered vaccine-induced immunity in children with Dravet syndrome[J]. Epilepsia, 2018, 59(4): e45-e50. doi: 10.1111/epi.14038
    [33] DENG L, WOOD N, DANCHIN M. Seizures following vaccination in children: Risks, outcomes and management of subsequent revaccination[J]. Aust J Gen Pract, 2020, 49(10): 644-649. doi: 10.31128/AJGP-02-20-5236
    [34] DIMOPOULOU D, KOUTSAKI M, GIORGI M, et al. Effects of measles-containing vaccination in children with severe underlying neurologic disease[J]. Vaccine, 2021, 39(10): 1481-1484. doi: 10.1016/j.vaccine.2020.11.061
    [35] 吴光声, 朱亚非, 李珊, 等. 3个全面性癫痫伴热性惊厥附加症家系的遗传学研究[J]. 中华全科医学, 2019, 17(7): 1125-1127, 1240. doi: 10.16766/j.cnki.issn.1674-4152.000880

    WU G S, ZHU Y F, LI S, et al. Gene mutation screening in three families with generalized epilepsy with febrile seizures plus[J]. Chinese Journal of General Practice, 2019, 17(7): 1125-1127, 1240. doi: 10.16766/j.cnki.issn.1674-4152.000880
    [36] DAMIANO J A, DENG L, LI W H, et al. SCN1A variants in vaccine-related febrile seizures: A prospective study[J]. Ann Neurol, 2020, 87(2): 281-288. doi: 10.1002/ana.25650
    [37] FANG Z X, HONG S Q, LI T S, et al. Genetic and phenotypic characteristics of SCN1A-related epilepsy in Chinese children[J]. Neuroreport, 2019, 30(9): 671-680. doi: 10.1097/WNR.0000000000001259
    [38] DENG L, MA A, WOOD N, et al. Vaccination management in an asymptomatic child with a novel SCN1A variant and family history of status epilepticus following vaccination: A case report on a potential new direction in personalised medicine[J]. Seizure, 2020, 78(3): 49-52.
    [39] GHAZAVI M, NASIRI J, YAGHINI O, et al. Oral diazepam in febrile seizures following acellular pertussis vaccination[J]. Adv Biomed Res, 2019, 26(3): 29.
    [40] LONG C M, BEARE P A, COCKRELL D C, et al. Contributions of lipopolysaccharide and the type IVB secretion system to coxiella burnetii vaccine efficacy and reactogenicity[J]. NPJ Vaccines, 2021, 6(1): 38. doi: 10.1038/s41541-021-00296-6
  • 加载中
计量
  • 文章访问数:  280
  • HTML全文浏览量:  59
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 网络出版日期:  2022-12-30

目录

    /

    返回文章
    返回