[1] |
KAJIHARA D, HON C C, ABDULLAH A N, et al. Analysis of splice variants of the human protein disulfide isomerase (P4HB) gene[J]. BMC Genomics, 2020, 21(1): 766. doi: 10.1186/s12864-020-07164-y
|
[2] |
MATSUSAKI M, KANEMURA S, KINOSHITA M, et al. The protein disulfide isomerase family: From proteostasis to pathogenesis[J]. Biochim Biophys Acta Gen Subj, 2020, 1864(2): 129338. DOI: 10.1016/j.bbagen.2019.04.003.
|
[3] |
GUYETTE J, EVANGELISTA B, TATULIAN S A, et al. Stability and conformational resilience of protein disulfide isomerase[J]. Biochemistry, 2019, 58(34): 3572-3584. doi: 10.1021/acs.biochem.9b00405
|
[4] |
JHA V, KUMARI T, MANICKAM V, et al. ERO1-PDI redox signaling in health and disease[J]. Antioxid Redox Signal, 2021, 35(13): 1093-1115. doi: 10.1089/ars.2021.0018
|
[5] |
XIONG B, JHA V, MIN J K, et al. Protein disulfide isomerase in cardiovascular disease[J]. Exp Mol Med, 2020, 52(3): 390-399. doi: 10.1038/s12276-020-0401-5
|
[6] |
GIMENEZ M, VERÍSSIMO-FILHO S, WITTIG I, et al. Redox activation of Nox1 (NADPH oxidase 1) involves an intermolecular disulfide bond between protein disulfide isomerase and p47phox in vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2019, 39(2): 224-236. doi: 10.1161/ATVBAHA.118.311038
|
[7] |
CHINNARAJ M, BARRIOS D A, FRIEDEN C, et al. Bioorthogonal chemistry enables single-molecule FRET measurements of catalytically active protein disulfide isomerase[J]. Chembiochem, 2021, 22(1): 134-138. doi: 10.1002/cbic.202000537
|
[8] |
ESSEX D W, WU Y. Multiple protein disulfide isomerases support thrombosis[J]. Curr Opin Hematol, 2018, 25(5): 395-402. doi: 10.1097/MOH.0000000000000449
|
[9] |
XU X L, CHIU J, CHEN S, et al. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms[J]. Br J Pharmacol, 2021, 178(15): 2911-2930. doi: 10.1111/bph.15493
|
[10] |
HIRAYAMA C, MACHIDA K, NOI K, et al. Distinct roles and actions of protein disulfide isomerase family enzymes in catalysis of nascent-chain disulfide bond formation[J]. iScience, 2021, 24(4): 102296. DOI: 10.1016/j.isci.2021.102296.
|
[11] |
OKUMURA M, NOI K, INABA K. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding[J]. Curr Opin Struct Biol, 2021, 66: 49-57. doi: 10.1016/j.sbi.2020.10.004
|
[12] |
MA Y S, FENG S, LIN L, et al. Protein disulfide isomerase inhibits endoplasmic reticulum stress response and apoptosis via its oxidoreductase activity in colorectal cancer[J]. Cell Signal, 2021, 86: 110076. DOI: 10.1016/j.cellsig.2021.110076.
|
[13] |
GANGULY R, KHANAL S, MATHIAS A, et al. TSP-1 (thrombospondin-1) deficiency protects ApoE-/- mice against leptin-induced atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(2): e112-e127.
|
[14] |
ZHANG K J, LI M M, YIN L, et al. Role of thrombospondin-1 and thrombospondin-2 in cardiovascular diseases (Review)[J]. Int J Mol Med, 2020, 45(5): 1275-1293.
|
[15] |
SHARDA A, FURIE B. Regulatory role of thiol isomerases in thrombus formation[J]. Expert Rev Hematol, 2018, 11(5): 437-448. doi: 10.1080/17474086.2018.1452612
|
[16] |
CAPOZZI A, RⅡTANO G, RECALCHI S, et al. Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by anti-β2-GPI antibodies[J]. J Thromb Haemost, 2021, 19(9): 2302-2313. doi: 10.1111/jth.15417
|
[17] |
TANAKA L Y, OLIVEIRA P V S, LAURINDO F R M. Peri/epicellular thiol oxidoreductases as mediators of extracellular redox signaling[J]. Antioxid Redox Signal, 2020, 33(4): 280-307. doi: 10.1089/ars.2019.8012
|
[18] |
WEAVER J C, ULLAH I, QI M, et al. Free thiol β2-GPI (β-2-Glycoprotein-I) provides a link between inflammation and oxidative stress in atherosclerotic coronary artery disease[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11): 2794-2804. doi: 10.1161/ATVBAHA.120.315156
|
[19] |
KUMAR S, CHINNARAJ M, PLANER W, et al. An allosteric redox switch in domain V of β2-glycoprotein I controls membrane binding and anti-domain I autoantibody recognition[J]. J Biol Chem, 2021, 297(2): 100890. DOI: 10.1016/j.jbc.2021.100890.
|
[20] |
ANSARI S A, PENDURTHI U R, RAO L V M. Role of cell surface lipids and thiol-disulphide exchange pathways in regulating the encryption and decryption of tissue factor[J]. Thromb Haemost, 2019, 119(6): 860-870. doi: 10.1055/s-0039-1681102
|
[21] |
CHEN F W, ZHAO Z Z, ZHOU J S, et al. Protein disulfide isomerase enhances tissue factor-dependent thrombin generation[J]. Biochem Biophys Res Commun, 2018, 501(1): 172-177. doi: 10.1016/j.bbrc.2018.04.207
|
[22] |
POPIELARSKI M, PONAMARCZUK H, STASIAK M, et al. P2Y12 receptor antagonists and AR receptor agonists regulates Protein Disulfide Isomerase secretion from platelets and endothelial cells[J]. Biochem Biophys Res Commun, 2020, 526(3): 756-763. doi: 10.1016/j.bbrc.2020.03.143
|
[23] |
KAO C C, KUNG P H, TAI C J, et al. Juglone prevents human platelet aggregation through inhibiting Akt and protein disulfide isomerase[J]. Phytomedicine, 2021, 82: 153449. DOI: 10.1016/j.phymed.2020.153449.
|
[24] |
MINEIRO M F, PATRICIO E S, S PEIXOTO Á, et al. Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence[J]. Biochim Biophys Acta Gen Subj, 2020, 1864(3): 129481. DOI: 10.1016/j.bbagen.2019.129481.
|
[25] |
PRZYBOROWSKI K, KURPINSKA A, WOJKOWSKA D, et al. Protein disulfide isomerase-A1 regulates intraplatelet reactive oxygen species-thromboxane A2-dependent pathway in human platelets[J]. J Thromb Haemost, 2022, 20(1): 157-169. doi: 10.1111/jth.15539
|
[26] |
QIN R R, ZHU H, WANG F, et al. Platelet activation in diabetic mice models: The role of vascular endothelial cell-derived protein disulfide isomerase-mediated GP Ⅱb/Ⅲa receptor activation[J]. Aging (Albany NY), 2019, 11(16): 6358-6370.
|
[27] |
WU Y, ESSEX D W. Vascular thiol isomerases in thrombosis: The yin and yang[J]. J Thromb Haemost, 2020, 18(11): 2790-2800. doi: 10.1111/jth.15019
|
[28] |
ROSENBERG N, MOR-COHEN R, SHEPTOVITSKY V H, et al. Integrin-mediated cell adhesion requires extracellular disulfide exchange regulated by protein disulfide isomerase[J]. Exp Cell Res, 2019, 381(1): 77-85. doi: 10.1016/j.yexcr.2019.04.017
|
[29] |
梁程辉, 陈丹, 廖馨源, 等. 蛋白质二硫键异构酶的结构及抑制剂研究进展[J]. 生物化学与生物物理进展, 2020, 47(7): 595-606. doi: 10.16476/j.pibb.2020.0065LIANG C H, CHEN D, LIAO X Y, et al. Progress in the structural studies and inhibitor development of protein disulfide isomerase[J]. Progress in Biochemistry and Biophysics, 2020, 47(7): 595-606. doi: 10.16476/j.pibb.2020.0065
|
[30] |
张金, 李程, 韩笑蓉, 等. 抗磷脂综合征相关循环系统表现[J]. 中华全科医学, 2021, 19(9): 1557-1561. doi: 10.16766/j.cnki.issn.1674-4152.002111ZHANG J, LI C, HAN X R, et al. Circulatory system manifestations of antiphospholipid antibody syndrome[J]. Chinese Journal of General Practice, 2021, 19(9): 1557-1561. doi: 10.16766/j.cnki.issn.1674-4152.002111
|
[31] |
WANG X, XUE G P, SONG M R, et al. Molecular basis of rutin inhibition of protein disulfide isomerase (PDI) by combined in silico and experimental methods[J]. RSC Adv, 2018, 8(33): 18480-18491. doi: 10.1039/C8RA02683A
|
[32] |
CHEN D, LIU Y R, LIU P W, et al. Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition[J]. Drug Deliv, 2022, 29(1): 1824-1835. doi: 10.1080/10717544.2022.2083726
|
[33] |
CHOI S S, PARK H R, LEE K A. A comparative study of rutin and rutin glycoside: Anti-oxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation[J]. Antioxidants (Basel), 2021, 10(11): 1696. doi: 10.3390/antiox10111696
|
[34] |
DUTTA A, DAHIYA A, VERMA S. Quercetin-3-rutinoside protects against gamma radiation inflicted hematopoietic dysfunction by regulating oxidative, inflammatory, and apoptotic mediators in mouse spleen and bone marrow[J]. Free Radic Res, 2021, 55(3): 230-245. doi: 10.1080/10715762.2021.1914334
|
[35] |
WU H T, SU M L, JIN H, et al. Rutin-loaded silver nanoparticles with antithrombotic function[J]. Front Bioeng Biotechnol, 2020, 8: 598977. DOI: 10.3389/fbioe.2020.598977.
|
[36] |
STAINER A R, SASIKUMAR P, BYE A P, et al. The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects[J]. TH Open, 2019, 3(3): e244-e258. doi: 10.1055/s-0039-1694028
|
[37] |
ZWICKER J I, SCHLECHTER B L, STOPA J D, et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer[J]. JCI Insight, 2019, 4(4): e125851. DOI: 10.1172/jci.insight.125851.
|
[38] |
RAKSHIT S, SHUKLA P, VERMA A, et al. Protective role of rutin against combined exposure to lipopolysaccharide and D-galactosamine-induced dysfunctions in liver, kidney, and brain: Hematological, biochemical, and histological evidences[J]. J Food Biochem, 2021, 45(2): e13605. DOI: 10.1111/jfbc.13605.
|
[39] |
HOLBROOK L M, KEETON S J, SASIKUMAR P, et al. Zafirlukast is a broad-spectrum thiol isomerase inhibitor that inhibits thrombosis without altering bleeding times[J]. Br J Pharmacol, 2021, 178(3): 550-563. doi: 10.1111/bph.15291
|
[40] |
DUAN H X Y, ZHANG Q, LIU J, et al. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis[J]. Pharmacol Res, 2021, 168: 105599. DOI: 10.1016/j.phrs.2021.105599.
|