留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

入院24 h内首次血常规参数对儿童危重症的预测价值

杭航 赵武 孙琦 郭启秀 马晓倩 郑子凡

杭航, 赵武, 孙琦, 郭启秀, 马晓倩, 郑子凡. 入院24 h内首次血常规参数对儿童危重症的预测价值[J]. 中华全科医学, 2023, 21(2): 190-194. doi: 10.16766/j.cnki.issn.1674-4152.002842
引用本文: 杭航, 赵武, 孙琦, 郭启秀, 马晓倩, 郑子凡. 入院24 h内首次血常规参数对儿童危重症的预测价值[J]. 中华全科医学, 2023, 21(2): 190-194. doi: 10.16766/j.cnki.issn.1674-4152.002842
HANG Hang, ZHAO Wu, SUN Qi, GUO Qi-xiu, MA Xiao-qian, ZHENG Zi-fan. Predictive value of the first blood routine parameters within 24 hours of admission for critical illness in children[J]. Chinese Journal of General Practice, 2023, 21(2): 190-194. doi: 10.16766/j.cnki.issn.1674-4152.002842
Citation: HANG Hang, ZHAO Wu, SUN Qi, GUO Qi-xiu, MA Xiao-qian, ZHENG Zi-fan. Predictive value of the first blood routine parameters within 24 hours of admission for critical illness in children[J]. Chinese Journal of General Practice, 2023, 21(2): 190-194. doi: 10.16766/j.cnki.issn.1674-4152.002842

入院24 h内首次血常规参数对儿童危重症的预测价值

doi: 10.16766/j.cnki.issn.1674-4152.002842
基金项目: 

安徽省重点研究与开发计划项目 2022e07020035

详细信息
    通讯作者:

    赵武,E-mail: 719986535@qq.com

  • 中图分类号: R725 R446.11

Predictive value of the first blood routine parameters within 24 hours of admission for critical illness in children

  • 摘要:   目的  探讨入院24 h内首次血常规参数与儿童危重症的相关性,并建立ROC曲线和列线图模型以评价其对儿童危重症的预测价值。  方法  以2015年4月—2019年12月蚌埠医学院第一附属医院儿童重症监护室入院24 h内行血常规检查并完成小儿危重病例评分的患儿为研究对象。将患儿随机分为训练队列和验证队列,训练队列患儿变量与危重症的相关性采用logistic回归分析。采用受试者工作特征曲线分析变量对2个队列危重症的预测效能,采用R语言构建训练队列列线图预测模型评估危重症的发生概率。  结果  共纳入496例患儿,男283例,女213例,中位年龄2.0(0.57,5.88)岁。训练队列347例,验证队列149例。白细胞计数(WBC)、红细胞分布宽度CV(RDW-CV)及网织红细胞百分比(RET%)与训练队列患儿危重症显著相关(均P < 0.05),WBC+RDW-CV+RET%联合指标预测训练队列及验证队列危重症的曲线下面积分别为0.644和0.711,在最佳截断值为0.357和0.290时,联合指标预测2个队列危重症的灵敏度分别为46.4%和79.6%,特异度分别为80.0%和60.0%。以训练队列WBC、RDW-CV及RET%构建列线图模型,一致性指数、校准曲线、决策曲线和临床影响曲线分析表明列线图可预测儿童危重症。  结论  入院24 h内首次WBC+RDW-CV+RET%对儿童危重症具有较好的预测效能,以WBC、RDW-CV及RET%构建的列线图可预测儿童危重症的发生概率。

     

  • 图  1  WBC+RDW-CV+RET%联合指标预测训练队列和验证队列危重症的ROC曲线

    注:A为训练队列受试者工作特征曲线,B为验证队列受试者工作特征曲线。

    Figure  1.  Combined WBC+RDW-CV+RET% to predict ROC curve of critical illness in training cohort and validation cohort

    图  2  列线图预测儿童危重症

    注:个体患儿危重症风险概率估计如下,在WBC、RDW-CV、RET%变量轴上确定相应的值,从该值到顶部的Points轴绘制一条垂直线,以确定变量对应的分值,然后将3个变量的分值相加,在Total Points轴找到对应的总分并垂直投影到底部的Risks轴,获得个体患儿危重症发生的风险概率。

    Figure  2.  Nomogram for predicting critical illness in children

    图  3  列线图预测训练队列和验证队列危重症发生的校准曲线、决策曲线及临床影响曲线分析

    注:A为训练队列校准曲线,B为验证队列校准曲线。长虚线为45°对角线,代表最佳预测结果,短虚线为危重症发生曲线,实线为危重症预测曲线。C为训练队列决策曲线,D为验证队列决策曲线。横坐标为风险阈概率,纵坐标为净获益,无治疗线(蓝色实线)表示所有患儿被认为是非危重症不治疗的净获益,治疗线(绿色实线)表示所有患儿被认为是危重症接受治疗的净获益,红色实线分别为2个队列的模型曲线。E为训练队列临床影响曲线,F为验证队列临床影响曲线。横坐标为风险阈概率,纵坐标为危重症高危人数,红色曲线表示在各个风险阈概率下,被模型判定为危重症高风险的预测曲线,蓝色虚线为各个风险阈概率下危重症的发生曲线。

    Figure  3.  Analysis of calibration curve, decision curve and clinical influence curve of critical illness occurrence in training cohort and validation cohort

    表  1  训练队列和验证队列基线特征比较

    Table  1.   Comparison of baseline characteristics between training queue and validation queue

    项目 训练队列(n=347) 验证队列(n=149) 统计量 P
    危重症[例(%)] 112(32.3) 49(32.9) 0.018a 0.894
    年龄[(岁)] 5.70(3.20,11.40) 1.83(0.62,6.00) -0.671b 0.502
    性别[例(%)]
      男 201(57.9) 82(55.0) 0.356a 0.551
      女 146(42.1) 67(45.0)
    WBC(×109/L) 12.06(8.35,17.63) 12.04(8.36,19.15) -0.719b 0.472
    N(%) 67.20(48.90,81.80) 69.40(52.90,80.15) -0.088b 0.930
    RBC(×1012/L) 4.26(3.78,4.59) 4.20(3.77,4.53) -0.946b 0.344
    HB(g/L) 115(103,125) 115(101.5,124.0) -0.436b 0.663
    HCT 0.35(0.31,0.37) 0.34(0.31,0.37) -0.982b 0.326
    PLT(×109/L) 310(234,310) 305(233,391) -0.225b 0.822
    MCV(fL) 81.6(78.0,85.7) 81.6(77.65,85.25) -0.309b 0.758
    MCH(pg) 27.4(26.1,28.8) 27.6(26.05,28.7) -0.381b 0.703
    MCHC(g/L) 334(325,345) 337(327,345) -1.030b 0.303
    RDW-CV(%) 13.6(12.9,14.6) 13.6(13.0,14.7) -0.042b 0.967
    RDW-SD(fL) 40.3(37.9,43.3) 40.5(38.25,43.55) -0.338b 0.735
    MPV(fL) 7.2(6.7,8.8) 7.5(6.8,9.4) -1.992b 0.065
    PCT(ml/L) 0.30(0.23,0.39) 0.30(0.23,0.39) -0.116b 0.908
    PDW(%) 11.1(10.1,12.2) 11.0(10.1,12.3) -0.187b 0.852
    P-LCR(%) 23.7(19.2,28.8) 23.2(19.15,29.25) -0.170b 0.865
    RET% 0.88(0.65,1.27) 0.89(0.64,1.38) -0.185b 0.854
    IRF(%) 5.7(3.2,11.4) 5.3(2.7,11.3) -0.671b 0.502
    注:a为χ2值,bZ值。
    下载: 导出CSV

    表  2  训练队列危重症危险因素单因素logistic回归分析

    Table  2.   Univariate logistic regression analysis of critical illness risk factors in training cohort

    变量 β SE Waldχ2 P OR 95% CI
    年龄(岁) -0.191 0.156 1.504 0.220 0.826 0.777~0.905
    性别 -0.061 0.233 0.068 0.794 0.941 0.596~1.486
    WBC(×109/L) 0.032 0.014 5.308 0.021 1.033 1.005~1.061
    N(%) -0.009 0.005 2.922 0.087 0.991 0.980~1.001
    RBC(×1012/L) -0.364 0.173 4.438 0.035 0.695 0.496~0.975
    HB(g/L) -0.014 0.006 4.880 0.027 0.986 0.973~0.998
    HCT -3.997 2.287 3.055 0.080 0.018 0.000~1.624
    PLT(×109/L) 0.001 0.001 0.792 0.374 1.001 0.999~1.002
    MCV(fL) 0.018 0.017 1.079 0.299 1.018 0.984~1.054
    MCH(pg) -0.010 0.042 0.060 0.806 0.990 0.911~1.075
    MCHC(g/L) -0.013 0.007 3.506 0.061 0.987 0.974~1.001
    RDW-CV(%) 0.226 0.076 8.878 0.003 1.254 1.080~1.455
    RDW-SD(fL) 0.061 0.020 9.132 0.003 1.063 1.022~1.106
    MPV(fL) 0.071 0.079 0.812 0.368 1.074 0.919~1.255
    PCT(ml/L) 0.988 0.854 1.336 0.248 2.685 0.503~14.332
    PDW(%) 0.011 0.055 0.041 0.839 1.011 0.907~1.127
    P-LCR(%) 0.005 0.014 0.141 0.707 1.005 0.978~1.034
    RET% 0.367 0.125 8.579 0.003 1.444 1.129~1.846
    IRF 0.041 0.015 7.394 0.007 1.042 1.011~1.073
    下载: 导出CSV

    表  3  训练队列危重症危险因素多因素logistic回归分析

    Table  3.   Multivariate logistic regression analysis of critical illness risk factors in training cohort

    变量 β SE Waldχ2 P OR 95% CI
    WBC(×109/L) 0.031 0.014 4.809 0.028 1.032 1.003~1.061
    RDW-CV(%) 0.164 0.080 4.181 0.041 1.179 1.007~1.380
    RET% 0.288 0.132 4.782 0.029 1.334 1.030~1.728
    下载: 导出CSV
  • [1] 中华医学会儿科学会急救学组. 第四届全国小儿急救医学研讨会纪要[J]. 中华儿科杂志, 1995, 33(6): 370-373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHEK506.024.htm

    First aid Group of Pediatrics Society of Chinese Medical Association. Summary of the Fourth National Pediatric Emergency Medicine Seminar[J]. Chinese Journal of Pediatrics, 1995, 33(6): 370-373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHEK506.024.htm
    [2] 小儿危重病例评分试用协作组. 小儿危重病例评分法(草案)临床应用的评价[J]. 中华儿科杂志, 1998, 36(10): 579-582. doi: 10.3760/j.issn:0578-1310.1998.10.001

    Pediatric critical case scoring trial collaboration group. Evaluation of pediatric critical illness scoring system in clinical application[J]. Chinese Journal of Pediatrics, 1998, 36(10): 579-582. doi: 10.3760/j.issn:0578-1310.1998.10.001
    [3] 简化小儿危重病例评分试用协作组. 简化小儿危重病例评分法的临床应用[J]. 中华儿科杂志, 2003, 41(8): 565-569. doi: 10.3760/j.issn:0578-1310.2003.08.003

    Simplified pediatric critical case scoring trial collaboration group. Clinical application of simplified pediatric critical illness scoring system[J]. Chinese Journal of Pediatrics, 2003, 41(8): 565-569. doi: 10.3760/j.issn:0578-1310.2003.08.003
    [4] BALOCH S H, IBRAHIM P M N, LOHANO P D, et al. Pediatric risk of mortality Ⅲ Score in predicting mortality among diabetic ketoacidosis patients in a pediatric intensive care unit[J]. Cureus, 2021, 13(11): e19734. DOI: 10.7759/cureus.19734.
    [5] ZHENG Y, ZHANG Y, CHI H, et al. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study[J]. Clin Chem Lab Med, 2020, 58(7): 1106-1115. doi: 10.1515/cclm-2020-0377
    [6] PURCELL L N, PRIN M, SINCAVAGE J, et al. Outcomes following intensive care unit admission in a pediatric cohort in Malawi[J]. Trop Pediatr, 2020, 66(6): 621-629. doi: 10.1093/tropej/fmaa025
    [7] KARAGOZ I, AKTAS G, YOLDAS H, et al. Association between hemogram parameters and survival of critically ill patients[J]. Intensive Care Med, 2019, 34(6): 511-513. doi: 10.1177/0885066617703348
    [8] ZHANG Z, LIN E, ZHUANG H, et al. Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma[J]. Cancer Cell Int, 2020, 20: 27. doi: 10.1186/s12935-020-1113-6
    [9] WANG K, LI M, LIU R, et al. Analysis of risk factors for anastomotic leakage after laparoscopic anterior resection of rectal cancer and construction of a nomogram prediction model[J]. Cancer Manag Res, 2022, 14: 2243-2252. doi: 10.2147/CMAR.S364875
    [10] PARK S Y. Nomogram: an analogue tool to deliver digital knowledge[J]. J Thorac Cardiovasc Surg, 2018, 155(4): 1793. doi: 10.1016/j.jtcvs.2017.12.107
    [11] XIAO R, QIN Y, LIU L, et al. Development and validation of nomogram based on a novel platelet index score to predict prognosis in patients with renal cell carcinoma[J]. J Cancer, 2021, 12(21): 6301-6309. doi: 10.7150/jca.60268
    [12] WU J, ZHANG H, LI L, et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: a population-based analysis[J]. Cancer Commun (Lond), 2020, 40(7): 301-312. doi: 10.1002/cac2.12067
    [13] VICKERS A J, VAN CALSTER B, STEYERBERG E W. A simple, step-by-step guide to interpreting decision curve analysis[J]. Diagn Progn Res, 2019, 3: 18. doi: 10.1186/s41512-019-0064-7
    [14] WANG K, GONG M, XIE S, et al. Nomogram prediction for the 3-year risk of type 2 diabetes in healthy mainland China residents[J]. EPMA, 2019, 10(3): 227-237. doi: 10.1007/s13167-019-00181-2
    [15] DENG X, HOU H, WANG X, et al. Development and validation of a nomogram to better predict hypertension based on a 10-year retrospective cohort study in China[J]. Elife, 2021, 10: e66419. DOI: 10.7554/eLife.66419.
    [16] SHAH S, DESHMUKH C T, TULLU M S. The predictors of outcome and progression of pediatric sepsis and septic shock: a prospective observational study from western India[J]. Postgrad Med, 2020, 66(2): 67-72. doi: 10.4103/jpgm.JPGM_171_19
    [17] CORONADO M A, TASAYCO J, MORALES W, et al. High incidence of stroke and mortality in pediatric critical care patients with COVID-19 in Peru[J]. Pediatr Res, 2022, 91(7): 1730-1734. doi: 10.1038/s41390-021-01547-x
    [18] SILVA LITAO M K, KAMAT D. Back to basics: red blood cell distribution width: clinical use beyond hematology[J]. Pediatr Rev, 2018, 39(4): 204-209. doi: 10.1542/pir.2017-0118
    [19] KIM D H, HA E J, PARK S J, et al. Evaluation of the usefulness of red blood cell distribution width in critically ill pediatric patients[J]. Medicine (Baltimore), 2020, 99(36): e22075. DOI: 10.1097/MD.0000000000022075.
    [20] LEE J, ZHU Y, WILLIAMS D J, et al. Red blood cell distribution width and pediatric community-acquired pneumonia disease severity[J]. Hosp Pediatr, 2022, 12(9): 798-805. doi: 10.1542/hpeds.2022-006539
    [21] 杨剑秋, 毕建洲. 红细胞分布宽度对肺部感染所致脓毒症预后的评估价值分析[J]. 中华全科医学, 2020, 18(11): 1827-1829, 1915. doi: 10.16766/j.cnki.issn.1674-4152.001629

    YANG J Q, BI J Z. Role of Red blood cell distribution width in evaluating the prognosis of patients with sepsis caused by pulmonary infection[J]. Chinese Journal of General Practice, 2020, 18(11): 1827-1829, 1915. doi: 10.16766/j.cnki.issn.1674-4152.001629
    [22] PIERRE R V. Reticulocytes. Their usefulness and measurement in peripheral blood[J]. Clin Lab Med, 2002, 22(1): 63-79. doi: 10.1016/S0272-2712(03)00067-2
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  54
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 网络出版日期:  2023-04-20

目录

    /

    返回文章
    返回