Effects of hyperbaric oxygen combined with Xingnaojing injection on the consciousness improvement and serum SOD and NO in comatose patients with traumatic brain injury
-
摘要:
目的 探讨临床治疗创伤性脑损伤(TBI)昏迷患者, 单用醒脑静注射液与高压氧联合醒脑静注射液的2种治疗方式对于患者意识改善及血清中氧化应激指标水平的影响。 方法 采用回顾性调查研究法,整理2021年5月1日—2022年1月31日在合肥市第二人民医院高压氧科及神经外科治疗的56例重度TBI昏迷患者的临床资料,根据在院期间患者是否接受高压氧治疗分为高压氧治疗组(观察组)32例和未接受高压氧治疗组(对照组)24例。利用格拉斯哥昏迷量表(GCS)对2组患者治疗前后意识状态进行评估并记录,检测2组治疗前、治疗第10天、治疗第20天血清超氧化物歧化酶(SOD)、一氧化氮(NO)水平并记录患者苏醒率。 结果 治疗后,2组患者GCS评分均较治疗前增高(均P < 0.05),观察组GCS评分为(9.22±2.27)分,明显高于对照组[(7.71±2.77)分,P < 0.05];且观察组苏醒率[59.4%(19/32)]明显高于对照组[29.2%(7/24), P < 0.05]。2组治疗前、治疗第10天和第20天的SOD值均依次上升。2组治疗前、治疗第10天和第20天的NO值均依次下降。 结论 高压氧联合醒脑静注射液治疗创伤性脑损伤昏迷患者可更明显地改善患者意识状态,提升苏醒率,其可能的作用机制与血清SOD水平升高及血清NO水平下降有关。 Abstract:Objective This study aims to investigate the effects of two therapeutic methods of Xingnaojing injection alone and hyperbaric oxygen combined with Xingnaojing injection on the improvement of consciousness and the levels of SOD and NO in serum of patients with coma caused by traumatic brain injury (TBI). Methods The clinical data of 56 patients with severe TBI coma who were treated in the hyperbaric oxygen department and neurosurgery department of Hefei Second People ' s Hospital from May 1, 2021 to January 31, 2022 were collected by retrospective investigation. The patients were divided into the hyperbaric oxygen treatment group (observation group) and non-hyperbaric oxygen treatment group (control group) based on whether they received hyperbaric oxygen treatment during the hospital period, including 32 patients in the observation group and 24 patients in the control group. The Glasgow coma scale (GCS) was used to assess and record the consciousness status in the two groups of patients before and after treatment. The levels of serum superoxide dismutase (SOD) and nitric oxide (NO) were measured before treatment, on the 10th and 20th days of treatment in 2 groups, meantime, the recovery rate of patients was recorded. Results The GCS score of the two groups after treatment was higher than that before treatment (all P < 0.05). The GCS score of the observation group after treatment increased to (9.22±2.27) points, which was significantly higher than that of the control group after treatment [(7.71±2.77) points, P < 0.05]. The recovery rate of the observation group [59.4% (19/32)] was significantly higher than that of the control group [29.2% (7/24), P < 0.05]. The SOD level of the two groups increased sequentially before treatment, on the 10th and 20th days of treatment. While, the NO level of the two groups decreased sequentially before treatment, on the 10th and 20th days of treatment. Conclusion Hyperbaric oxygen combined with Xingnaojing injection can significantly improve the consciousness of patients with coma caused by traumatic brain injury, and increase the recovery rate. Furthermore, its possible mechanism is related to the increase of serum SOD level and the decrease of serum NO level. -
Key words:
- Hyperbaric oxygen /
- Traumatic brain injury /
- Superoxide dismutase /
- Nitric oxide /
- Xingnaojing injection
-
表 1 2组TBI昏迷患者治疗前后GCS评分比较(x±s,分)
Table 1. Comparison of GCS scores before and after treatment in two groups of coma patients with TBI (x±s, points)
组别 例数 治疗前 治疗后 t值 P值 对照组 24 6.46±1.77 7.71±2.77 3.907 0.001 观察组 32 6.56±1.59 9.22±2.27 7.933 <0.001 t值 0.232 2.241 P值 0.818 0.029 表 2 2组TBI昏迷患者治疗前后SOD水平比较(x±s,U/mL)
Table 2. Comparison of SOD level in two groups of TBI coma patients before and after treatment (x±s, U/mL)
组别 例数 治疗前 治疗第10天 治疗第20天 F值 P值 对照组 24 93.51±20.61 109.13±22.01 116.81±21.20 9.291 <0.001 观察组 32 96.32±25.68 116.62±24.40 139.07±21.62 46.037 <0.001 t值 0.193 1.403 14.777 P值 0.662 0.241 <0.001 表 3 2组TBI昏迷患者治疗前后NO水平比较(x±s,μmol/L)
Table 3. Comparison of NO levels in two groups of TBI coma patients before and after treatment (x±s, μmol/L)
组别 例数 治疗前 治疗第10天 治疗第20天 F值 P值 对照组 24 100.58±14.14 92.80±11.32 87.63±13.83 13.553 <0.001 观察组 32 105.43±17.02 90.66±18.02 62.66±12.94 171.433 <0.001 t值 1.280 0.260 48.166 P值 0.263 0.612 <0.001 -
[1] KHELLAF A, KHAN D Z, HELMY A. Recent advances in traumatic brain injury[J]. J Neurol, 2019, 266(11): 2878-2889. doi: 10.1007/s00415-019-09541-4 [2] JIANG J Y, GAO G Y, FENG J F, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295. doi: 10.1016/S1474-4422(18)30469-1 [3] BOURGEOIS-TARDIF S, DE BEAUMONT L, RIVERA J C, et al. Role of innate inflammation in traumatic brain injury[J]. Neurol Sci, 2021, 42(4): 1287-1299. doi: 10.1007/s10072-020-05002-3 [4] DALY S, THORPE M, ROCKSWOLD S, et al. Hyperbaric oxygen therapy in the treatment of acute severe traumatic brain injury: a systematic review[J]. J Neurotrauma, 2018, 35(4): 623-629. doi: 10.1089/neu.2017.5225 [5] 席峰. 醒脑静注射液在重度脑外伤中的疗效评估[J]. 世界复合医学, 2019, 5(10): 189-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SJFH201910063.htmXI F. Evaluation of curative effect of Xingnaojing Injection in severe brain trauma[J]. 世界复合医学, 2019, 5(10): 189-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SJFH201910063.htm [6] HEIM C, SCHOETTKER P, SPAHN D R. Glasgow Coma Scale in traumatic brain injury[J]. Anaesthesist, 2004, 53(12): 1245-1256. doi: 10.1007/s00101-004-0777-y [7] GROTE S, BÖCKER W, MUTSCHLER W, et al. Diagnostic value of the Glasgow Coma Scale for traumatic brain injury in 18, 002 patients with severe multiple injuries[J]. J Neurotrauma, 2011, 28(4): 527-534. doi: 10.1089/neu.2010.1433 [8] REITH F C, VAN DEN BRANDE R, SYNNOT A, et al. The reliability of the Glasgow Coma Scale: a systematic review[J]. Intensive Care Med, 2016, 42(1): 3-15. doi: 10.1007/s00134-015-4124-3 [9] O ' LEARY R A, NICHOL A D. Pathophysiology of severe traumatic brain injury[J]. J Neurosurg Sci, 2018, 62(5): 542-548. [10] KHATRI N, THAKUR M, PAREEK V, et al. Oxidative stress: major threat in traumatic brain injury[J]. CNS Neurol Disord Drug Targets, 2018, 17(9): 689-695. doi: 10.2174/1871527317666180627120501 [11] 赵建阳, 张民, 薄红梅, 等. 中西医结合治疗急性重型颅脑损伤临床研究[J]. 中国药业, 2021, 30(20): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202120027.htmZHAO J Y, ZHANG M, BAO H M, et al. Clinical study of integrated traditional chinese and western medicine in the treatment of acute severe craniocerebral injury[J]. 中国药业, 2021, 30(20): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202120027.htm [12] CHEN Y W, WANG L, YOU W J, et al. Hyperbaric oxygen therapy promotes consciousness, cognitive function, and prognosis recovery in patients following traumatic brain injury through various pathways[J]. Front Neurol, 2022, 13: 929386. DOI: 10.3389/fneur.2022.929386. [13] KÖRPINAR Ş, UZUN H. The effects of hyperbaric oxygen at different pressures on oxidative stress and antioxidant status in rats[J]. Medicina (Kaunas), 2019, 55(5): 205. doi: 10.3390/medicina55050205 [14] SCHOTTLENDER N, GOTTFRIED I, ASHERY U. Hyperbaric oxygen treatment: effects on mitochondrial function and oxidative stress[J]. Biomolecules, 2021, 11(12): 1827. doi: 10.3390/biom11121827 [15] 谢凤欣, 张东云, 府伟灵, 等. 颅脑损伤生物标志物的研究现状与未来[J]. 中华全科医学, 2020, 18(4): 638-641, 661. doi: 10.16766/j.cnki.issn.1674-4152.001318XIE F X, ZHANG D Y, FU W L, et al. Research current and Future of biomarkers of brain injury[J]. Chinese Journal of General Practice, 2020, 18(4): 638-641, 661. doi: 10.16766/j.cnki.issn.1674-4152.001318 [16] YOUNUS H. Therapeutic potentials of superoxide dismutase[J]. Int J Health Sci (Qassim), 2018, 12(3): 88-93. [17] WANG Y, BRANICKY R, NOẼ A, et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling[J]. J Cell Biol, 2018, 217(6): 1915-1928. doi: 10.1083/jcb.201708007 [18] SULHAN S, LYON K A, SHAPIRO L A, et al. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets[J]. J Neurosci Res, 2020, 98(1): 19-28. doi: 10.1002/jnr.24331 [19] DEMIR D, KURU BEKTAŞOǦLU P, KOYUNCUOǦLU T, et al. Neuroprotective effects of mildronate in a rat model of traumatic brain injury[J]. Injury, 2019, 50(10): 1586-1592. doi: 10.1016/j.injury.2019.08.036 [20] MUBALLE K D, SEWANI-RUSIKE C R, LONGO-MBENZA B, et al. Predictors of recovery in moderate to severe traumatic brain injury[J]. J Neurosurg, 2018: 1-10. DOI: 10.3171/2018.4.JNS172185. [21] CHE X R, FANG Y J, SI X L, et al. The role of gaseous molecules in traumatic brain injury: an updated review[J]. Front Neurosci, 2018, 12: 392. doi: 10.3389/fnins.2018.00392 [22] TENOPOULOU M, DOULIAS P T. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism[J]. F1000Res, 2020, 9: F1000 Faculty Rev-1190. DOI: 10.12688/f1000research.19998.1. [23] KAUR P, SHARMA S. Recent advances in pathophysiology of traumatic brain injury[J]. Curr Neuropharmacol, 2018, 16(8): 1224-1238. doi: 10.2174/1570159X15666170613083606 [24] MADER M M, CZORLICH P. The role of L-arginine metabolism in neurocritical care patients[J]. Neural Regen Res, 2022, 17(7): 1446-1453.
计量
- 文章访问数: 213
- HTML全文浏览量: 58
- PDF下载量: 6
- 被引次数: 0