Genetic factors of ventricular septal defect in 199 cases in the second or third trimester of pregnancy
-
摘要:
目的 探讨单核苷酸多态性微阵列芯片技术(single nucleotide polymorphism array,SNP array)检测胎儿室间隔缺损的遗传学病因的应用价值。 方法 回顾性分析2015年1月—2020年12月在广西壮族自治区妇幼保健院就诊的199例妊娠孕中期或孕晚期胎儿室间隔缺损的孕妇资料, 行羊膜腔穿刺抽取羊水标本或脐静脉穿刺抽取脐带血标本, 分析其染色体核型结果与基因芯片结果,结合查询拷贝数变异(copy number variations,CNVs)数据库、DGV以及PubMed等数据库对检出的CNV的致病性进行分析。 结果 199例胎儿羊水或脐带血染色体核型异常27例,检出率为13.57%,其中22例染色体非整倍体异常,5例染色体结构异常。SNP array检出41例异常,检出率为20.60%(41/199),SNP array异常检出率稍高于染色体核型异常检出率;芯片异常中有32例致病性,其中27例与核型分析结果一致,5例核型未见异常而芯片检出染色体微缺失综合征,另外9例为临床意义不明的染色体微缺失/微重复。 结论 孕中晚期产前诊断胎儿室间隔缺损以染色体非整倍体为主,SNP array技术可检测出亚显微致病性CNV,为胎儿室间隔缺损的遗传咨询和预后评估提供依据。 -
关键词:
- 室间隔缺损 /
- 产前诊断 /
- 单核苷酸多态性微阵列芯片 /
- 染色体分析
Abstract:Objective This study aims to explore the application value of single-nucleotide polymorphism array (SNP array) in the genetic aetiology of foetal ventricular septal defect. Methods A retrospective analysis was performed on 199 cases of foetal ventricular septal defect during the second or third trimester of pregnancy in Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region from January 2015 to December 2020. Amniocentesis was performed to extract amniotic fluid samples, or umbilical cord venipuncture was performed to extract umbilical cord blood samples. Chromosome karyotype and gene chip were analysed. The pathogenicity of detected CNV was analysed by querying CNV, DGV and PubMed databases. Results Twenty-seven cases of foetal amniotic fluid or cord blood chromosomal karyotype abnormalities were detected, with rate of 13.57%. Moreover, 22 cases of chromosome aneuploidy abnormality and 5 cases of chromosome structure abnormality were found. The SNP array detected 41 abnormalities, with the detection rate of 20.60% (41/199). The detection rate of SNP array abnormalities was slightly higher than that of chromosomal karyotype abnormalities; among the cases of microarray abnormalities, 32 cases were pathogenic; of which, 27 cases were consistent with the results of the karyotype analysis, 5 cases showed no abnormal karyotype but the chip detected chromosome microdeletion syndrome and the 9 other cases had chromosome microdeletion/microduplication of unknown clinical significance. Conclusion Chromosomal aneuploidy is the main diagnosis of foetal ventricular septal defect in the second or third trimester of pregnancy. SNP array detection technology can detect sub-microscopic pathogenic CNV and provide basis for genetic counselling and prognosis evaluation of foetal ventricular septal defect. -
表 1 SNP array检出的5例胎儿心脏室间隔缺损畸形中的致病性CNV结果
Table 1. Results of pathogenic CNV in 5 fetal ventricular septal defects detected by SNP array
病例 孕妇年龄(岁) 临床诊断 SNP array结果 临床意义 妊娠结局 1 25 胎儿室间隔缺损 arr[hg19]3p14.1p13(67756224-71961277)x1 4.21 Mb缺失。临床表现包括室间隔畸形、房间隔缺损、肺动脉狭窄等。 终止妊娠 2 26 室间隔缺损;胎儿永存左上腔静脉 arr[hg19]7q11.23(72744101-74138121)x1 1.39 Mb缺失。临床表现为心血管系统畸形、结缔组织异常等。 终止妊娠 3 24 胎儿室间隔缺损 arr[hg19]10q22.3q23.2(81643451-89175636)x1 7.53 Mb缺失。临床表现主要包括先天性心脏缺陷等。 终止妊娠 4 36 高龄妊娠;胎儿室间隔缺损 arr[hg19]22q11.21(20740778-21445064)x1 0.70 Mb缺失。临床表现为发育迟缓伴癫痫、生长受限等。 终止妊娠 5 34 胎儿室间隔缺损 arr[hg19]22q11.21(18889490-21462353)x1 2.58 Mb缺失。DiGeorge综合征,临床表现为心脏异常、异常面容等。 终止妊娠 -
[1] 闫景彬, 闫秀梅, 杨建享, 等. 产前Ⅲ级超声检测用于孕中期胎儿先天性心脏病筛查的临床价值[J]. 中华全科医学, 2020, 18(8): 1344-1347. doi: 10.16766/j.cnki.issn.1674-4152.001503YAN J B, YAN X M, YANG J X, et al. Clinical effect of detection of fetal nuchal translucency in early pregnancy combined with maternal serum biochemical markers for diagnosis of fetal dysplasia[J]. Chinese Journal of General Practice, 2020, 18(8): 1344-1347. doi: 10.16766/j.cnki.issn.1674-4152.001503 [2] 荆俊鹏, 马刚, 付春云, 等. 广西地区围产儿先天性心脏病发生率及其预后危险因素分析[J]. 现代预防医学, 2020, 47(20): 3822-3826. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202020046.htmJING J P, MA G, FU C Y, et al. The incidence and prognostic risk factors of perinatal congenital heart disease in Guangxi[J]. Modern Preventive Medicine, 2020, 47(20): 3822-3826. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202020046.htm [3] 何才通, 邓国生, 赖玉青, 等. 染色体微阵列联合核型分析在先天性心脏病胎儿产前诊断中的应用[J]. 广西医科大学学报, 2020, 37(9): 1686-1690. doi: 10.16190/j.cnki.45-1211/r.2020.09.018HE C T, DENG G S, LAI Y Q, et al. Application of chromosome microarray combined with karyotype analysis in prenatal diagnosis of congenital heart disease[J]. Journal of Guangxi Medical University, 2020, 37(9): 1686-1690. doi: 10.16190/j.cnki.45-1211/r.2020.09.018 [4] 徐晶磊, 邱海燕, 吴军华, 等. 先天性心脏病遗传相关病因的研究进展[J]. 医学研究杂志, 2019, 48(1): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYZ201901043.htmXU J L, QIU H Y, WU J H, et al. Advances in research on genetic causes of congenital heart disease[J]. Journal of Medical Research, 2019, 48(1): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYZ201901043.htm [5] 吴茜, 王璐, 曹冬梅, 等. 染色体微阵列分析技术在先天性心脏病产前诊断中的应用[J]. 中国科学: 生命科学, 2020, 50(3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202003009.htmWU Q, WANG L, CAO D M, et al. Use of prenatal chromosomal microarray analysis in fetal congenital heart disease[J]. Science in China: Life Sciences, 2020, 50(3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202003009.htm [6] 邓新娥, 黄杏玲, 陈惠, 等. 胎儿室间隔缺损产前诊断及预后分析[J]. 中国优生与遗传杂志, 2019, 27(10): 1231-1233. doi: 10.13404/j.cnki.cjbhh.2019.10.030DENG X E, HUANG X L, CHEN H, et al. Prenatal diagnosis and prognosis of fetal ventricular septal defect[J]. Chinese Journal of Birth Health & Heredity, 2019, 27(10): 1231-1233. doi: 10.13404/j.cnki.cjbhh.2019.10.030 [7] CAI M Y, HUANG H L, SU L J, et al. Chromosomal abnormalities and copy number variations in fetal ventricular septal defects[J]. Mol Cytogenet, 2018, 11: 58. doi: 10.1186/s13039-018-0408-y [8] 童珂雅, 何瑶, 陈科, 等. 染色体微阵列分析技术在产前致病性拷贝数变异诊断中的应用[J]. 实用妇产科杂志, 2021, 37(10): 783-789. doi: 10.3969/j.issn.1003-6946.2021.10.syfckzz202110017TONG K Y, HE Y, CHEN K, et al. The application of chromosome microarray analysis in prenatal diagnosis of pathogenic copy number variation[J]. Journal of Practical Obstetrics and Gynecology, 2021, 37(10): 783-789. doi: 10.3969/j.issn.1003-6946.2021.10.syfckzz202110017 [9] WANG H L, DONG Z R, ZHANG R, et al. Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis[J]. Genet Med, 2020, 22(3): 500-510. doi: 10.1038/s41436-019-0634-7 [10] THEVENON J, MONNIER N, CALLIER P, et al. Delineation of the 3p14.1p13 microdeletion associated with syndromic distal limb contractures[J]. Am J Med Genet A, 2014, 164A(12): 3027-3034. [11] 孔京慧, 李东晓, 章波, 等. 应用单核苷酸多态性芯片检测7q部分缺失伴发育迟缓患儿一例[J]. 中华医学遗传学杂志, 2020, 37(4): 486-488. doi: 10.3760/cma.j.issn.1003-9406.2020.04.031KONG J H, LI D X, ZHANG B, et al. A single nucleotide polymorphism chip was used to detect a child with partial 7q deletion and developmental delay[J]. Chinese Journal of Medical Genetics, 2020, 37(4): 486-488. doi: 10.3760/cma.j.issn.1003-9406.2020.04.031 [12] 曾丽娜, 张艳, 林荔, 等. 10q22.3q23.2微缺失家系的遗传学分析及产前诊断[J]. 中华医学遗传学杂志, 2021, 38(8): 768-770. doi: 10.3760/cma.j.cn511374-20200608-00419CENG L N, ZHANG Y, LIN L, et al. Genetic testing and prenatal diagnosis for a family with 10q22.3q23.2 microdeletion[J]. Chinese Journal of Medical Genetics, 2021, 38(8): 768-770. doi: 10.3760/cma.j.cn511374-20200608-00419 [13] PETROVA E, NEUNER C, HAAF T, et al. A Boy with an LCR3/4-Flanked 10q22.3q23.2 microdeletion and uncommon phenotypic features[J]. Mol Syndromol, 2014, 5(1): 19-24. doi: 10.1159/000355847 [14] 陈铎, 侯雅勤, 时盼来, 等. 22q11.2微缺失综合征胎儿的产前诊断及家系分析[J]. 中华医学遗传学杂志, 2021, 38(7): 659-662. doi: 10.3760/cma.j.cn511374-20200402-00234CHEN D, HOU Y Q, SHI P L, et al. Prenatal diagnosis and family analysis of 22q11.2 microdeletion syndrome[J]. Chinese Journal of Medical Genetics, 2021, 38(7): 659-662. doi: 10.3760/cma.j.cn511374-20200402-00234 [15] BEHIRY E G, ABO SENNA A A, ELNAGAR A E, et al. Evaluation of loss of heterozygosity of chromosome 22q11.21 region in patients with congenital heart diseases[J]. Egypt Heart J, 2018, 70(4): 267-270. doi: 10.1016/j.ehj.2018.07.003 [16] 朱朝锋, 时盼来, 焦智慧, 等. 全外显子组测序检测22q11.2微缺失综合征1例[J]. 国际检验医学杂志, 2021, 42(16): 2041-2043. doi: 10.3969/j.issn.1673-4130.2021.16.029ZHU C F, SHI P L, JIAO Z H, et al. A case of 22q11.2 microdeletion syndrome detected by whole exome sequencing[J]. International Journal of Laboratory Medicine, 2021, 42(16): 2041-2043. doi: 10.3969/j.issn.1673-4130.2021.16.029 [17] 郝晓艳, 刘晓伟, 张烨, 等. 46例22q11.2微缺失综合征胎儿心脏超声特征及临床表型[J]. 中华围产医学杂志, 2020, 23(6): 387-393. doi: 10.3760/cma.j.cn113903-20190812-00498HAO X Y, LIU X W, ZHANG Y, et al. Fetal echocardiographic features and clinical phenotype of 22q11.2 microdeletion syndrome: analysis of 46 cases[J]. Chinese Journal of Perinatal Medicine, 2020, 23(6): 387-393. doi: 10.3760/cma.j.cn113903-20190812-00498 [18] 吴静, 孟歌, 徐千雅, 等. 五例DiGeorge综合征患儿不同临床表型与遗传学特征分析[J]. 中华内分泌代谢杂志, 2020, 36(6): 485-491. doi: 10.3760/cma.j.cn311282-20190829-00350WU J, MENG G, XU Q Y, et al. Different clinical phenotypes and genetic characteristics of five patients with DiGeorge syndrome[J]. Chinese Journal of Endocrinology and Metabolism, 2020, 36(6): 485-491. doi: 10.3760/cma.j.cn311282-20190829-00350 [19] GEOFFRION T R, GOIDBERG D, CROWLY T B, et al. Chromosome 22q11 copy number variants and single ventricle CHD[J]. Cardiol Young, 2022. DOI: 10.1017/S1047951122000385. [20] 蔡美英, 林娜, 苏林涓, 等. 22q11微缺失综合征胎儿的产前超声特点及遗传学分析[J]. 中华医学遗传学杂志, 2021, 38(9): 853-856. doi: 10.3760/cma.j.cn511374-20200331-00222CAI M Y, LIN N, SU L J, et al. Prenatal ultrasonic characteristics and genetic analysis of fetuses with chromosome 22q11 microdeletion syndrome[J]. Chinese Journal of Medical Genetics, 2021, 38(9): 853-856. doi: 10.3760/cma.j.cn511374-20200331-00222 [21] 侯磊, 李介岩, 邢宇, 等. 22q11.2微缺失综合征胎儿的超声特征[J]. 首都医科大学学报, 2021, 42(2): 183-187. doi: 10.3969/j.issn.1006-7795.2021.02.003HOU L, LI J Y, XING Y, et al. Ultrasonographic features of fetus with 22q11.2 deletion syndrome[J]. Journal of Capital Medical University, 2021, 42(2): 183-187. doi: 10.3969/j.issn.1006-7795.2021.02.003
计量
- 文章访问数: 245
- HTML全文浏览量: 190
- PDF下载量: 13
- 被引次数: 0