留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T细胞在主动脉瓣钙化中的研究进展

张明东 路喆鑫 顾红兵 樊永亮 叶一舟

张明东, 路喆鑫, 顾红兵, 樊永亮, 叶一舟. T细胞在主动脉瓣钙化中的研究进展[J]. 中华全科医学, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999
引用本文: 张明东, 路喆鑫, 顾红兵, 樊永亮, 叶一舟. T细胞在主动脉瓣钙化中的研究进展[J]. 中华全科医学, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999
ZHANG Mingdong, LU Zhexin, GU Hongbing, FAN Yongliang, YE Yizhou. Research progress on T cells in aortic valve calcification[J]. Chinese Journal of General Practice, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999
Citation: ZHANG Mingdong, LU Zhexin, GU Hongbing, FAN Yongliang, YE Yizhou. Research progress on T cells in aortic valve calcification[J]. Chinese Journal of General Practice, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999

T细胞在主动脉瓣钙化中的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.002999
详细信息
    通讯作者:

    叶一舟,E-mail: yeyizhouvip@sina.com

  • 中图分类号: R654.2 R543.1

Research progress on T cells in aortic valve calcification

  • 摘要: 钙化性主动脉瓣疾病(calcific aortic valve disease, CAVD)是全世界最普遍的心脏瓣膜疾病,其特征是主动脉瓣进行性的纤维钙化最后导致瓣膜狭窄和心力衰竭,严重者可导致死亡。随着研究的深入, 主动脉瓣钙化性疾病不再被认为是一种在高龄时发生的单纯的钙沉积被动过程, 而是一个涉及免疫及炎症因素的复杂调控过程。主动脉瓣钙化的早期病变机制与动脉粥样硬化过程极其相似,是一个涉及内皮损伤、脂质浸润、慢性炎症、基质重构、细胞分化、钙盐沉积及新生血管形成等复杂变化的多信号通路共同参与的主动过程。近年的研究也明确了免疫和炎症反应包括氧化脂质、各种细胞因子对主动脉瓣钙化的重要调节作用。免疫和炎症反应通过调节骨形成相关的信号通路参与心血管系统中的骨生成进而导致主动脉瓣钙化,其中T细胞在其发病机制和疾病延续中起着至关重要的作用。在主动脉瓣钙化过程中,T细胞受到各种各样的微环境信号调节导致T细胞的增殖与分化并表现出不同的作用机制。研究钙化主动脉瓣膜中T细胞的分型及相关作用有助于探索改善主动脉瓣钙化的治疗方法。本文总结了目前T细胞在主动脉瓣钙化中的研究进展,并结合T细胞在动脉粥样硬化中的研究结果,探索T细胞在主动脉瓣钙化中的潜在作用,为钙化性主动脉瓣疾病的深入研究及后续靶点药物的开发提供参考。

     

  • [1] PEETERS F, MEEX S J R, DWECK M R, et al. Calcific aortic valve stenosis: hard disease in the heart: a biomolecular approach towards diagnosis and treatment[J]. Eur Heart J, 2018, 39(28): 2618-2624. doi: 10.1093/eurheartj/ehx653
    [2] CURINI L, ALUSHI B, CHRISTOPHER M R, et al. The first taxonomic and functional characterization of human CAVD-associated microbiota[J]. Microb Cell, 2023, 10(2): 36-48. doi: 10.15698/mic2023.02.791
    [3] RADDATZ M A, MADHUR M S, MERRYMAN W D. Adaptive immune cells in calcific aortic valve disease[J]. Am J Physiol Heart Circ Physiol, 2019, 317(1): H141-H155. doi: 10.1152/ajpheart.00100.2019
    [4] WANG D H, XIONG T H, YU W L, et al. Predicting the key genes involved in aortic valve calcification through integrated bioinformatics analysis[J]. Front Genet, 2021, 12: 650213. DOI: 10.3389/fgene.2021.650213.
    [5] GOLSTEIN P, GRIFFITHS G M. An early history of T cell-mediated cytotoxicity[J]. Nat Rev Immunol, 2018, 18(8): 527-535. doi: 10.1038/s41577-018-0009-3
    [6] PASSOS L S A, JHA P K, BECKER-GREENE D, et al. Prothymosin Alpha: a novel contributor to estradiol receptor alpha-mediated CD8(+) T-cell pathogenic responses and recognition of Type 1 collagen in rheumatic heart valve disease[J]. Circulation, 2022, 145(7): 531-548. doi: 10.1161/CIRCULATIONAHA.121.057301
    [7] NAGY E, LEI Y, MARTíNEZ-MARTíNEZ E, et al. Interferon-γ released by activated CD8(+) T lymphocytes impairs the calcium resorption potential of osteoclasts in calcified human aortic valves[J]. Am J Pathol, 2017, 187(6): 1413-1425. doi: 10.1016/j.ajpath.2017.02.012
    [8] ÉVA SIKURA K, COMBI Z, POTOR L, et al. Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization[J]. J Adv Res, 2021, 27: 165-176. doi: 10.1016/j.jare.2020.07.005
    [9] GRIM J C, AGUADO B A, VOGT B J, et al. Secreted Factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11): e296-e308.
    [10] WU G F, NIE W B, WANG Q, et al. Umbelliferone ameliorates complete freund adjuvant-induced arthritis via reduction of NF-κB signaling pathway in osteoclast differentiation[J]. Inflammation, 2021, 44(4): 1315-1329. doi: 10.1007/s10753-021-01418-x
    [11] HE Y B, GUO J H, WANG C, et al. IL-33 promotes the progression of nonrheumatic aortic valve stenosis via inducing differential phenotypic transition in valvular interstitial cells[J]. J Cardiol, 2020, 75(2): 124-133. doi: 10.1016/j.jjcc.2019.06.011
    [12] MERINO-MERINO A, GONZALEZ-BERNAL J, FERNANDEZ-ZOPPINO D, et al. The role of Galectin-3 and ST2 in cardiology: a short review[J]. Biomolecules, 2021, 11(8): 1167. doi: 10.3390/biom11081167
    [13] SCHNITZLER J G, ALI L, GROENEN A G, et al. Lipoprotein(a) as orchestrator of calcific aortic valve stenosis[J]. Biomolecules, 2019, 9(12): 760. doi: 10.3390/biom9120760
    [14] CHEN X, WANG Z Q, DUAN N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. doi: 10.1080/03008207.2017.1290085
    [15] ALLAM G, ABDEL-MONEIM A, GABER A M. The pleiotropic role of interleukin-17 in atherosclerosis[J]. Biomed Pharmacother, 2018, 106: 1412-1418. doi: 10.1016/j.biopha.2018.07.110
    [16] LJUNGBERG J, JANIEC M, BERGDAHL I A, et al. Proteomic biomarkers for incident aortic stenosis requiring valvular replacement[J]. Circulation, 2018, 138(6): 590-599. doi: 10.1161/CIRCULATIONAHA.117.030414
    [17] LIU Z T, WANG Y X, SHI J W, et al. IL-21 promotes osteoblastic differentiation of human valvular interstitial cells through the JAK3/STAT3 pathway[J]. Int J Med Sci, 2020, 17(18): 3065-3072. doi: 10.7150/ijms.49533
    [18] SAIGUSA R, WINKELS H, LEY K. T cell subsets and functions in atherosclerosis[J]. Nat Rev Cardiol, 2020, 17(7): 387-401. doi: 10.1038/s41569-020-0352-5
    [19] MUNJAL A, KHANDIA R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition[J]. Adv Protein Chem Struct Biol, 2020, 120: 85-122. http://www.xueshufan.com/publication/2996257806
    [20] CROTTY S. T follicular helper cell biology: a decade of discovery and diseases[J]. Immunity, 2019, 50(5): 1132-1148. doi: 10.1016/j.immuni.2019.04.011
    [21] GADDIS D E, PADGETT L E, WU R P, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis[J]. Nat Commun, 2018, 9(1): 1095. doi: 10.1038/s41467-018-03493-5
    [22] TAY C, LIU Y H, KANELLAKIS P, et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin g[J]. Arterioscler Thromb Vasc Biol, 2018, 38(5): e71-e84.
    [23] SAITO T. Molecular dynamics of co-signal molecules in T-Cell activation[J]. Adv Exp Med Biol, 2019, 1189: 135-152.
    [24] 余筱燕, 汤珂珂, 吕迪. 阻滞Kv1.3通道抑制CD4+ CD28(null) T细胞活性缓解糖尿病微血管损伤的实验研究[J]. 中华全科医学, 2019, 17(8): 1335-1339, 1412. doi: 10.16766/j.cnki.issn.1674-4152.000937

    YU X Y, TANG K K, LYU D. Inhibit the activity of CD4+ CD28null T cells to alleviate diabetic microvascular damage by blocking Kv1.3 channel[J]. Chinese Journal of General Practice, 2019, 17(8): 1335-1339, 1412. doi: 10.16766/j.cnki.issn.1674-4152.000937
    [25] BROADLEY I, PERA A, MORROW G, et al. Expansions of Cytotoxic CD4+CD28- T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection[J]. Front Immunol, 2017, 8: 195.
    [26] VAN LAECKE S, MALFAIT T, SCHEPERS E, et al. Cardiovascular disease after transplantation: an emerging role of the immune system[J]. Transpl Int, 2018, 31(7): 689-699. doi: 10.1111/tri.13160
    [27] LEE S, BARTLETT B, DWIVEDI G. Adaptive immune responses in human atherosclerosis[J]. Int J Mol Sci, 2020, 21(23): 9322. doi: 10.3390/ijms21239322
    [28] FU Y, LIN Q, ZHANG Z R, et al. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity[J]. Acta Pharm Sin B, 2020, 10(3): 414-433. doi: 10.1016/j.apsb.2019.08.010
    [29] DUAN Y Y, TANG H Y, MITCHELL-SILBAUGH K, et al. Heat shock protein 60 in cardiovascular physiology and diseases[J]. Front Mol Biosci, 2020, 7: 73. doi: 10.3389/fmolb.2020.00073
    [30] ABEL A M, YANG C, THAKAR M S, et al. Natural killer cells: development, maturation, and clinical utilization[J]. Front Immunol, 2018, 9: 1869. doi: 10.3389/fimmu.2018.01869
    [31] MAZUR P, MIELIMONKA A, NATORSKA J, et al. Lymphocyte and monocyte subpopulations in severe aortic stenosis at the time of surgical intervention[J]. Cardiovasc Pathol, 2018, 35: 1-7. doi: 10.1016/j.carpath.2018.03.004
    [32] BLASER M C, KRALER S, LVSCHER T F, et al. Multi-Omics approaches to define calcific aortic valve disease pathogenesis[J]. Circ Res, 2021, 128(9): 1371-1397. doi: 10.1161/CIRCRESAHA.120.317979
    [33] SHARMA N, TOOR D. Interleukin-10: role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease[J]. Cytokine, 2017, 90: 169-176. doi: 10.1016/j.cyto.2016.11.010
  • 加载中
计量
  • 文章访问数:  154
  • HTML全文浏览量:  61
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04

目录

    /

    返回文章
    返回