留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DCE-MRI参数直方图术前评估胃癌分化程度的研究

金建国 高丽渊 王象萍 潘孝本

金建国, 高丽渊, 王象萍, 潘孝本. DCE-MRI参数直方图术前评估胃癌分化程度的研究[J]. 中华全科医学, 2023, 21(10): 1728-1731. doi: 10.16766/j.cnki.issn.1674-4152.003211
引用本文: 金建国, 高丽渊, 王象萍, 潘孝本. DCE-MRI参数直方图术前评估胃癌分化程度的研究[J]. 中华全科医学, 2023, 21(10): 1728-1731. doi: 10.16766/j.cnki.issn.1674-4152.003211
JIN Jianguo, GAO Liyuan, WANG Xiangping, PAN Xiaoben. Preoperative evaluation of gastric cancer differentiation using DCE-MRI parameter histograms[J]. Chinese Journal of General Practice, 2023, 21(10): 1728-1731. doi: 10.16766/j.cnki.issn.1674-4152.003211
Citation: JIN Jianguo, GAO Liyuan, WANG Xiangping, PAN Xiaoben. Preoperative evaluation of gastric cancer differentiation using DCE-MRI parameter histograms[J]. Chinese Journal of General Practice, 2023, 21(10): 1728-1731. doi: 10.16766/j.cnki.issn.1674-4152.003211

DCE-MRI参数直方图术前评估胃癌分化程度的研究

doi: 10.16766/j.cnki.issn.1674-4152.003211
基金项目: 

国家自然科学基金常规面上项目 82070610

2021年杭州市医药卫生科技项目 B20220841

详细信息
    通讯作者:

    金建国,E-mail:3388035900@qq.com

  • 中图分类号: R735.2  R730.4

Preoperative evaluation of gastric cancer differentiation using DCE-MRI parameter histograms

  • 摘要:   目的  本研究以术前胃癌患者为研究对象,旨在分析DCE-MRI直方图定量参数对术前评估胃癌分化程度的诊断价值。  方法  选取2020年5月—2023年5月浙江大学医学院附属第二医院临平院区收治的128例胃癌患者为研究对象。术前行DCE-MRI检查,获得DCE-MRI定量参数直方图,包括血管外细胞外间隙容积比(Ve)、容积转运常数(Ktrans)、速率常数(Kep)的偏度、熵、峰度、平均值及10%、90%(P10、P90)。分析上述参数对胃癌分化程度的评估价值。  结果  低分化组Ve的P10和Ktrans及Kep的熵、平均值、P10、P90高于中分化组和高分化组(均P < 0.05);低分化组Kep的偏度、峰度低于中分化组和高分化组(均P < 0.05)。Logistic回归分析结果显示Ktrans的熵、平均值、P10、P90和Kep的偏度、熵、平均值、P10、P90水平异常升高是影响胃癌分化程度的危险因素(均P < 0.05)。ROC结果显示,Ktrans的熵、平均值、P10、P90和Kep的偏度、熵、平均值、P10、P90诊断低分化胃癌的AUC分别为0.739、0.806、0.812、0.758、0.714、0.726、0.786、0.761、0.749。  结论  DCE-MRI定量参数直方图对术前胃癌分化程度具有较高的诊断预测价值,其中Ktrans的P10诊断效能最佳。

     

  • 表  1  低分化组、中分化组、高分化组胃癌患者临床资料比较

    Table  1.   Comparison of clinical data of gastric cancer patients in low, medium, and high differentiation groups

    项目 低分化组(n=61) 中分化组(n=38) 高分化组(n=29) 统计量 P
    性别[例(%)] 0.734a 0.693
      男性 45(73.77) 26(68.42) 19(65.52)
      女性 16(26.23) 12(31.58) 10(34.48)
    年龄(x ±s,岁) 62.15±9.87 62.57±10.24 61.89±11.15 0.040b 0.962
    Hp感染史[例(%)] 0.913a 0.634
      有 42(68.85) 25(65.79) 17(58.62)
      无 19(31.15) 13(34.21) 12(41.38)
    家族史[例(%)] 0.987a 0.610
      有 27(44.26) 14(36.84) 10(34.48)
      无 34(55.74) 24(63.16) 19(65.52)
    萎缩性胃炎病史[例(%)] 0.314a 0.855
      有 18(29.51) 10(26.32) 7(24.14)
      无 43(70.49) 28(73.68) 22(75.86)
    饮酒史[例(%)] 0.395a 0.821
      有 24(39.34) 17(44.74) 11(37.93)
      无 37(60.66) 21(55.26) 18(62.07)
    吸烟史[例(%)] 0.266a 0.875
      有 37(60.66) 25(65.79) 18(62.07)
      无 24(39.34) 13(34.21) 11(37.93)
    肿瘤直径[例(%)] 4.294a 0.117
      ≤4 cm 35(57.38) 28(73.68) 22(75.86)
      >4 cm 26(42.62) 10(26.32) 7(24.14)
    CA125(x ±s,U/mL) 54.36±8.57 54.12±8.62 53.23±9.24 0.167b 0.846
    CA199(x ±s,U/mL) 71.36±12.42 70.86±11.75 70.02±13.42 0.114b 0.892
    注:a为χ2值,bF值。
    下载: 导出CSV

    表  2  低分化组、中分化组、高分化组胃癌患者DCE-MRI直方图定量参数比较[M(P25, P75)]

    Table  2.   Comparison of quantitative parameters of DCE MRI histograms in gastric cancer patients in the low-differentiation, middle-differentiation, and high-differentiation groups[M(P25, P75)]

    参数 低分化组(n=61) 中分化组(n=38) 高分化组(n=29) H P
    Ve
      偏度 0.04(-0.92,0.45) 0.07(-0.48,0.92) 0.31(-0.09,1.68) 3.624 0.148
      熵 5.89(4.51,6.41) 5.51(2.86,6.52) 3.53(0.78,5.12) 5.589 0.078
      峰度 0.62(-0.59,2.18) 0.13(-0.79,1.02) 0.31(-1.29,1.23) 3.768 0.152
      平均值 0.53(0.41,0.69) 0.49(0.35,0.63) 0.00(0.00,0.00) 5.108 0.056
      P10 0.00(0.00,0.38) 0.00(0.00,0.00) 0.00(0.00,0.26) 8.634 0.012
      P90 0.72(0.61,0.93) 0.75(0.49,0.86) 0.65(0.00,0.76) 2.641 0.238
    Ktrans(min)
      偏度 1.38(0.78,1.83) 1.61(1.08,2.29) 2.08(0.82,2.69) 4.125 0.118
      熵 6.52(6.31,6.87) 6.24(6.01,6.75) 6.05(5.54,6.37) 13.426 0.002
      峰度 2.24(-0.07,4.27) 3.16(1.15,5.81) 6.01(0.78,9.62) 4.589 0.087
      平均值 0.55(0.31,1.02) 0.28(0.21,0.58) 0.18(0.12,0.31) 22.873 < 0.001
      P10 0.14(0.10,0.22) 0.08(0.04,0.14) 0.07(0.01,0.10) 24.189 < 0.001
      P90 1.45(0.70,1.93) 0.79(0.47,1.35) 0.39(0.28,0.51) 19.325 < 0.001
    Kep(min)
      偏度 0.91(0.48,1.46) 1.54(1.03,2.36) 1.78(1.48,4.56) 10.902 0.005
      熵 6.86(4.28,6.97) 5.71(4.28,6.82) 4.15(1.69,5.68) 13.395 0.002
      峰度 0.39(-0.52,3.08) 2.04(0.64,5.71) 2.76(1.58,2.89) 8.769 0.011
      平均值 0.71(0.51,1.69) 0.47(0.22,0.83) 0.24(0.06,0.34) 20.725 < 0.001
      P10 0.11(0.01,0.28) 0.01(0.00,0.01) 0.00(0.00,0.01) 20.439 < 0.001
      P90 2.38(1.11,3.46) 1.49(0.94,2.24) 0.64(0.24,1.01) 15.987 < 0.001
    下载: 导出CSV

    表  3  胃癌分化程度影响因素多分类logistic回归分析

    Table  3.   Multivariate logistic regression analysis of factors influencing the degree of differentiation of gastric cancer

    变量 B SE Wald χ2 P OR 95% CI
    Ve
      P10 -0.315 0.308 1.046 0.107 0.730 0.515~0.945
    Ktrans
      熵 1.024 0.331 9.571 < 0.001 2.784 1.254~4.315
      平均值 1.685 0.394 18.290 < 0.001 5.392 1.964~8.821
      P10 1.739 0.402 18.713 < 0.001 5.692 2.026~9.357
      P90 1.314 0.342 14.762 < 0.001 3.721 1.430~6.012
    Kep
      偏度 0.803 0.305 6.932 0.005 2.232 1.051~3.413
      熵 0.892 0.316 7.968 0.001 2.440 1.159~3.721
      峰度 -0.386 0.361 1.143 0.204 0.680 0.488~0.872
      平均值 1.534 0.375 16.734 < 0.001 4.637 1.242~8.031
      P10 1.402 0.352 15.864 < 0.001 4.063 1.375~6.752
      P90 1.115 0.336 11.012 < 0.001 3.050 1.226~4.873
    下载: 导出CSV

    表  4  DCE-MRI直方图定量参数对胃癌低分化的诊断价值

    Table  4.   Diagnostic value of quantitative parameters in DCE-MRI histogram for low differentiated gastric cancer

    参数 AUC 临界值 灵敏度(%) 特异度(%)
    Ktrans
      熵 0.739 6.332 84.30 77.20
      平均值 0.806 0.312 86.80 61.30
      P10 0.812 0.132 68.90 86.70
      P90 0.758 1.417 57.80 83.90
    Kep
      偏度 0.714 0.926 58.10 83.96
      熵 0.726 6.789 57.80 86.40
      平均值 0.786 0.473 81.70 61.30
      P10 0.761 0.013 63.20 81.90
      P90 0.749 2.349 55.40 86.50
    下载: 导出CSV
  • [1] CHEN S, WEI Y, LIU H Y, et al. Analysis of Collagen type X alpha 1 (COL10A1) expression and prognostic significance in gastric cancer based on bioinformatics[J]. Bioengineered, 2021, 12(1): 127-137. doi: 10.1080/21655979.2020.1864912
    [2] 黄一波, 牛英群, 黄国强, 等. 基于时钟基因启动子区甲基化的胃癌患者预后预测模型的建立与验证[J]. 中华全科医学, 2022, 20(1): 43-46. doi: 10.16766/j.cnki.issn.1674-4152.002272

    HUANG Y B, NIU Y Q, HUNAG G Q, et al. Establishment and verification of a prognostic model for patients with gastric cancer based on clock gene promoter methylation[J]. Chinese Journal of General Practice, 2022, 20(1): 43-46. doi: 10.16766/j.cnki.issn.1674-4152.002272
    [3] QIU H B, CAO S M, XU R H. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J]. Cancer Commun (Lond), 2021, 41(10): 1037-1048. doi: 10.1002/cac2.12197
    [4] ZHANG M, HU S F, MIN M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing[J]. Gut, 2021, 70(3): 464-475. doi: 10.1136/gutjnl-2019-320368
    [5] 黄一波, 王国平, 王奕, 等. 胃癌患者SFRP1、SFRP2、SDC-2甲基化与病理特征的相关性分析[J]. 中华全科医学, 2021, 19(12): 2008-2011. doi: 10.16766/j.cnki.issn.1674-4152.002222

    HUANG Y B, WANG G P, WANG Y, et al. Correlation analysis of SFRP1, SFRP2 and SDC-2 methylation and pathological features in patients with gastric cancer[J]. Chinese Journal of General Practice, 2021, 19(12): 2008-2011. doi: 10.16766/j.cnki.issn.1674-4152.002222
    [6] AMADO CABANA S, GALLEGO OJEA J C, FÉLEZ CARBALLADA M. Usefulness of dynamic contrast-enhanced magnetic resonance imaging in characterizing ovarian tumors classified as indeterminate at ultrasonography[J]. Radiologia (Engl Ed), 2022, 64(2): 110-118. doi: 10.1016/j.rxeng.2020.05.006
    [7] DAKHIL H A, EASA A M, HUSSEIN A Y, et al. Diagnostic role of dynamic contrast-enhanced magnetic resonance imaging in differentiating breast lesions[J]. J Popul Ther Clin Pharmacol, 2022, 29(2): e88-e94.
    [8] PARK H, KIM S H, KIM J Y. Dynamic contrast-enhanced magnetic resonance imaging for risk stratification in patients with prostate cancer[J]. Quant Imaging Med Surg, 2022, 12(1): 742-751. doi: 10.21037/qims-21-455
    [9] PIH G Y, GONG E J, CHOI J Y, et al. Associations of serum lipid level with gastric cancer risk, pathology, and prognosis[J]. Cancer Res Treat, 2021, 53(2): 445-456. doi: 10.4143/crt.2020.599
    [10] LU H M, WU Y Y, LIU X, et al. The role of dynamic contrast-enhanced magnetic resonance imaging in predicting treatment response for cervical cancer treated with concurrent chemoradiotherapy[J]. Cancer Manag Res, 2021, 13: 6065-6078. doi: 10.2147/CMAR.S314289
    [11] OTA H, ITO M, KOBAYASHI C, et al. Superiority of sucrase-isomaltase to CD10 for immunohistochemical detection of intestinal absorptive cell phenotype in differentiated-type gastric adenocarcinoma[J]. Int J Clin Exp Pathol, 2021, 14(10): 1031-1037.
    [12] SRIYOOK A, LERTBUTSAYANUKUL C, JITTAPIROMSAK N. Value of dynamic contrast-enhanced magnetic resonance imaging for determining the plasma Epstein-Barr virus status and staging of nasopharyngeal carcinoma[J]. Clin Imaging, 2021, 72: 1-7. doi: 10.1016/j.clinimag.2020.10.047
    [13] LI Z H, ZHAO Z H, WANG C C, et al. Association between DCE-MRI perfusion histogram parameters and EGFR and VEGF expressions in different lauren classifications of advanced gastric cancer[J]. Pathol Oncol Res, 2022, 27: 1610001. DOI: 10.3389/pore.2021.1610001.
    [14] 孙茜楠, 蒋璟璇, 胡晨瑞, 等. DCE-MRI参数直方图术前评估子宫内膜癌肿瘤分化程度的价值[J]. 临床放射学杂志, 2020, 39(11): 2276-2281. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202011031.htm

    SUN X N, JIANG J X, HU C R, et al. Preoperative Evaluation of Differentiation of Endometrial Cancer by Histogram Analysis of DCE-MRI[J]. Journal of Clinical Radiology, 2020, 39(11): 2276-2281. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202011031.htm
    [15] 张霄, 张宏凯, 路双, 等. 动态对比增强MRI定量参数直方图分析预测胃癌病理分级的价值[J]. 实用放射学杂志, 2022, 38(1): 64-67, 84.

    ZHANG X, ZHANG H K, LU S, et al. The value of dynamic contrast-enhanced MRI quantitative parameters using histogram analysis in predicting the pathological grades of gastric cancer[J]. Journal of Practical Radiology, 2022, 38(1): 64-67, 84.
  • 加载中
表(4)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  69
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 网络出版日期:  2023-11-23

目录

    /

    返回文章
    返回