Preoperative evaluation of gastric cancer differentiation using DCE-MRI parameter histograms
-
摘要:
目的 本研究以术前胃癌患者为研究对象,旨在分析DCE-MRI直方图定量参数对术前评估胃癌分化程度的诊断价值。 方法 选取2020年5月—2023年5月浙江大学医学院附属第二医院临平院区收治的128例胃癌患者为研究对象。术前行DCE-MRI检查,获得DCE-MRI定量参数直方图,包括血管外细胞外间隙容积比(Ve)、容积转运常数(Ktrans)、速率常数(Kep)的偏度、熵、峰度、平均值及10%、90%(P10、P90)。分析上述参数对胃癌分化程度的评估价值。 结果 低分化组Ve的P10和Ktrans及Kep的熵、平均值、P10、P90高于中分化组和高分化组(均P < 0.05);低分化组Kep的偏度、峰度低于中分化组和高分化组(均P < 0.05)。Logistic回归分析结果显示Ktrans的熵、平均值、P10、P90和Kep的偏度、熵、平均值、P10、P90水平异常升高是影响胃癌分化程度的危险因素(均P < 0.05)。ROC结果显示,Ktrans的熵、平均值、P10、P90和Kep的偏度、熵、平均值、P10、P90诊断低分化胃癌的AUC分别为0.739、0.806、0.812、0.758、0.714、0.726、0.786、0.761、0.749。 结论 DCE-MRI定量参数直方图对术前胃癌分化程度具有较高的诊断预测价值,其中Ktrans的P10诊断效能最佳。 -
关键词:
- 磁共振动态对比增强成像 /
- 直方图分析 /
- 胃癌 /
- 分化程度
Abstract:Objective To analyze the diagnostic value of quantitative parameters of DCE-MRI histogram in preoperative evaluating the degree of differentiation of gastric cancer. Methods A total of 128 patients with gastric cancer admitted to the Second Affiliated Hospital of Zhejiang University School of Medicine from May 2020 to May 2023 were selected as the study objects. DCE-MRI was performed before surgery to obtain the histogram of quantitative parameters of DCE-MRI, including the skewness, entropy, kurtosis, average value and 10%, 90% (P10, P90) of extravascular extracellular space volume ratio (Ve), volume transport constant (Ktrans) and rate constant (Kep). The value of the above parameters in evaluating the differentiation degree of gastric cancer was analyzed. Results The entropy, mean value, P10 and P90 of P10, Ktrans and Kep of Ve in low differentiation group were higher than those in middle differentiation group and high differentiation group (all P < 0.05). The skewness and kurtosis of Kep in low differentiation group were lower than those in middle differentiation group and high differentiation group (all P < 0.05). Logistic regression analysis showed that abnormal increases in Ktrans entropy, mean value, skewness, entropy, mean value, P10, P90 and Kep levels were risk factors affecting the differentiation degree of gastric cancer (all P < 0.05). ROC results showed that the AUC of Ktrans entropy, mean value, P10, P90 and Kep skewness, entropy, mean value, P10 and P90 in the diagnosis of poorly differentiated gastric cancer were 0.739, 0.806, 0.812, 0.758, 0.714, 0.726, 0.786, 0.761 and 0.749, respectively. Conclusion DCE-MRI quantitative parameter histogram has high diagnostic value in predicting the differentiation degree of gastric cancer, and Ktrans P10 has the best diagnostic efficacy. -
表 1 低分化组、中分化组、高分化组胃癌患者临床资料比较
Table 1. Comparison of clinical data of gastric cancer patients in low, medium, and high differentiation groups
项目 低分化组(n=61) 中分化组(n=38) 高分化组(n=29) 统计量 P值 性别[例(%)] 0.734a 0.693 男性 45(73.77) 26(68.42) 19(65.52) 女性 16(26.23) 12(31.58) 10(34.48) 年龄(x ±s,岁) 62.15±9.87 62.57±10.24 61.89±11.15 0.040b 0.962 Hp感染史[例(%)] 0.913a 0.634 有 42(68.85) 25(65.79) 17(58.62) 无 19(31.15) 13(34.21) 12(41.38) 家族史[例(%)] 0.987a 0.610 有 27(44.26) 14(36.84) 10(34.48) 无 34(55.74) 24(63.16) 19(65.52) 萎缩性胃炎病史[例(%)] 0.314a 0.855 有 18(29.51) 10(26.32) 7(24.14) 无 43(70.49) 28(73.68) 22(75.86) 饮酒史[例(%)] 0.395a 0.821 有 24(39.34) 17(44.74) 11(37.93) 无 37(60.66) 21(55.26) 18(62.07) 吸烟史[例(%)] 0.266a 0.875 有 37(60.66) 25(65.79) 18(62.07) 无 24(39.34) 13(34.21) 11(37.93) 肿瘤直径[例(%)] 4.294a 0.117 ≤4 cm 35(57.38) 28(73.68) 22(75.86) >4 cm 26(42.62) 10(26.32) 7(24.14) CA125(x ±s,U/mL) 54.36±8.57 54.12±8.62 53.23±9.24 0.167b 0.846 CA199(x ±s,U/mL) 71.36±12.42 70.86±11.75 70.02±13.42 0.114b 0.892 注:a为χ2值,b为 F值。 表 2 低分化组、中分化组、高分化组胃癌患者DCE-MRI直方图定量参数比较[M(P25, P75)]
Table 2. Comparison of quantitative parameters of DCE MRI histograms in gastric cancer patients in the low-differentiation, middle-differentiation, and high-differentiation groups[M(P25, P75)]
参数 低分化组(n=61) 中分化组(n=38) 高分化组(n=29) H值 P值 Ve 偏度 0.04(-0.92,0.45) 0.07(-0.48,0.92) 0.31(-0.09,1.68) 3.624 0.148 熵 5.89(4.51,6.41) 5.51(2.86,6.52) 3.53(0.78,5.12) 5.589 0.078 峰度 0.62(-0.59,2.18) 0.13(-0.79,1.02) 0.31(-1.29,1.23) 3.768 0.152 平均值 0.53(0.41,0.69) 0.49(0.35,0.63) 0.00(0.00,0.00) 5.108 0.056 P10 0.00(0.00,0.38) 0.00(0.00,0.00) 0.00(0.00,0.26) 8.634 0.012 P90 0.72(0.61,0.93) 0.75(0.49,0.86) 0.65(0.00,0.76) 2.641 0.238 Ktrans(min) 偏度 1.38(0.78,1.83) 1.61(1.08,2.29) 2.08(0.82,2.69) 4.125 0.118 熵 6.52(6.31,6.87) 6.24(6.01,6.75) 6.05(5.54,6.37) 13.426 0.002 峰度 2.24(-0.07,4.27) 3.16(1.15,5.81) 6.01(0.78,9.62) 4.589 0.087 平均值 0.55(0.31,1.02) 0.28(0.21,0.58) 0.18(0.12,0.31) 22.873 < 0.001 P10 0.14(0.10,0.22) 0.08(0.04,0.14) 0.07(0.01,0.10) 24.189 < 0.001 P90 1.45(0.70,1.93) 0.79(0.47,1.35) 0.39(0.28,0.51) 19.325 < 0.001 Kep(min) 偏度 0.91(0.48,1.46) 1.54(1.03,2.36) 1.78(1.48,4.56) 10.902 0.005 熵 6.86(4.28,6.97) 5.71(4.28,6.82) 4.15(1.69,5.68) 13.395 0.002 峰度 0.39(-0.52,3.08) 2.04(0.64,5.71) 2.76(1.58,2.89) 8.769 0.011 平均值 0.71(0.51,1.69) 0.47(0.22,0.83) 0.24(0.06,0.34) 20.725 < 0.001 P10 0.11(0.01,0.28) 0.01(0.00,0.01) 0.00(0.00,0.01) 20.439 < 0.001 P90 2.38(1.11,3.46) 1.49(0.94,2.24) 0.64(0.24,1.01) 15.987 < 0.001 表 3 胃癌分化程度影响因素多分类logistic回归分析
Table 3. Multivariate logistic regression analysis of factors influencing the degree of differentiation of gastric cancer
变量 B SE Wald χ2 P值 OR值 95% CI Ve P10 -0.315 0.308 1.046 0.107 0.730 0.515~0.945 Ktrans 熵 1.024 0.331 9.571 < 0.001 2.784 1.254~4.315 平均值 1.685 0.394 18.290 < 0.001 5.392 1.964~8.821 P10 1.739 0.402 18.713 < 0.001 5.692 2.026~9.357 P90 1.314 0.342 14.762 < 0.001 3.721 1.430~6.012 Kep 偏度 0.803 0.305 6.932 0.005 2.232 1.051~3.413 熵 0.892 0.316 7.968 0.001 2.440 1.159~3.721 峰度 -0.386 0.361 1.143 0.204 0.680 0.488~0.872 平均值 1.534 0.375 16.734 < 0.001 4.637 1.242~8.031 P10 1.402 0.352 15.864 < 0.001 4.063 1.375~6.752 P90 1.115 0.336 11.012 < 0.001 3.050 1.226~4.873 表 4 DCE-MRI直方图定量参数对胃癌低分化的诊断价值
Table 4. Diagnostic value of quantitative parameters in DCE-MRI histogram for low differentiated gastric cancer
参数 AUC 临界值 灵敏度(%) 特异度(%) Ktrans 熵 0.739 6.332 84.30 77.20 平均值 0.806 0.312 86.80 61.30 P10 0.812 0.132 68.90 86.70 P90 0.758 1.417 57.80 83.90 Kep 偏度 0.714 0.926 58.10 83.96 熵 0.726 6.789 57.80 86.40 平均值 0.786 0.473 81.70 61.30 P10 0.761 0.013 63.20 81.90 P90 0.749 2.349 55.40 86.50 -
[1] CHEN S, WEI Y, LIU H Y, et al. Analysis of Collagen type X alpha 1 (COL10A1) expression and prognostic significance in gastric cancer based on bioinformatics[J]. Bioengineered, 2021, 12(1): 127-137. doi: 10.1080/21655979.2020.1864912 [2] 黄一波, 牛英群, 黄国强, 等. 基于时钟基因启动子区甲基化的胃癌患者预后预测模型的建立与验证[J]. 中华全科医学, 2022, 20(1): 43-46. doi: 10.16766/j.cnki.issn.1674-4152.002272HUANG Y B, NIU Y Q, HUNAG G Q, et al. Establishment and verification of a prognostic model for patients with gastric cancer based on clock gene promoter methylation[J]. Chinese Journal of General Practice, 2022, 20(1): 43-46. doi: 10.16766/j.cnki.issn.1674-4152.002272 [3] QIU H B, CAO S M, XU R H. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J]. Cancer Commun (Lond), 2021, 41(10): 1037-1048. doi: 10.1002/cac2.12197 [4] ZHANG M, HU S F, MIN M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing[J]. Gut, 2021, 70(3): 464-475. doi: 10.1136/gutjnl-2019-320368 [5] 黄一波, 王国平, 王奕, 等. 胃癌患者SFRP1、SFRP2、SDC-2甲基化与病理特征的相关性分析[J]. 中华全科医学, 2021, 19(12): 2008-2011. doi: 10.16766/j.cnki.issn.1674-4152.002222HUANG Y B, WANG G P, WANG Y, et al. Correlation analysis of SFRP1, SFRP2 and SDC-2 methylation and pathological features in patients with gastric cancer[J]. Chinese Journal of General Practice, 2021, 19(12): 2008-2011. doi: 10.16766/j.cnki.issn.1674-4152.002222 [6] AMADO CABANA S, GALLEGO OJEA J C, FÉLEZ CARBALLADA M. Usefulness of dynamic contrast-enhanced magnetic resonance imaging in characterizing ovarian tumors classified as indeterminate at ultrasonography[J]. Radiologia (Engl Ed), 2022, 64(2): 110-118. doi: 10.1016/j.rxeng.2020.05.006 [7] DAKHIL H A, EASA A M, HUSSEIN A Y, et al. Diagnostic role of dynamic contrast-enhanced magnetic resonance imaging in differentiating breast lesions[J]. J Popul Ther Clin Pharmacol, 2022, 29(2): e88-e94. [8] PARK H, KIM S H, KIM J Y. Dynamic contrast-enhanced magnetic resonance imaging for risk stratification in patients with prostate cancer[J]. Quant Imaging Med Surg, 2022, 12(1): 742-751. doi: 10.21037/qims-21-455 [9] PIH G Y, GONG E J, CHOI J Y, et al. Associations of serum lipid level with gastric cancer risk, pathology, and prognosis[J]. Cancer Res Treat, 2021, 53(2): 445-456. doi: 10.4143/crt.2020.599 [10] LU H M, WU Y Y, LIU X, et al. The role of dynamic contrast-enhanced magnetic resonance imaging in predicting treatment response for cervical cancer treated with concurrent chemoradiotherapy[J]. Cancer Manag Res, 2021, 13: 6065-6078. doi: 10.2147/CMAR.S314289 [11] OTA H, ITO M, KOBAYASHI C, et al. Superiority of sucrase-isomaltase to CD10 for immunohistochemical detection of intestinal absorptive cell phenotype in differentiated-type gastric adenocarcinoma[J]. Int J Clin Exp Pathol, 2021, 14(10): 1031-1037. [12] SRIYOOK A, LERTBUTSAYANUKUL C, JITTAPIROMSAK N. Value of dynamic contrast-enhanced magnetic resonance imaging for determining the plasma Epstein-Barr virus status and staging of nasopharyngeal carcinoma[J]. Clin Imaging, 2021, 72: 1-7. doi: 10.1016/j.clinimag.2020.10.047 [13] LI Z H, ZHAO Z H, WANG C C, et al. Association between DCE-MRI perfusion histogram parameters and EGFR and VEGF expressions in different lauren classifications of advanced gastric cancer[J]. Pathol Oncol Res, 2022, 27: 1610001. DOI: 10.3389/pore.2021.1610001. [14] 孙茜楠, 蒋璟璇, 胡晨瑞, 等. DCE-MRI参数直方图术前评估子宫内膜癌肿瘤分化程度的价值[J]. 临床放射学杂志, 2020, 39(11): 2276-2281. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202011031.htmSUN X N, JIANG J X, HU C R, et al. Preoperative Evaluation of Differentiation of Endometrial Cancer by Histogram Analysis of DCE-MRI[J]. Journal of Clinical Radiology, 2020, 39(11): 2276-2281. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202011031.htm [15] 张霄, 张宏凯, 路双, 等. 动态对比增强MRI定量参数直方图分析预测胃癌病理分级的价值[J]. 实用放射学杂志, 2022, 38(1): 64-67, 84.ZHANG X, ZHANG H K, LU S, et al. The value of dynamic contrast-enhanced MRI quantitative parameters using histogram analysis in predicting the pathological grades of gastric cancer[J]. Journal of Practical Radiology, 2022, 38(1): 64-67, 84.
计量
- 文章访问数: 166
- HTML全文浏览量: 69
- PDF下载量: 14
- 被引次数: 0