Antimicrobial resistance of common pathogens and their special types in urinary tract infection
-
摘要:
目的 了解尿路感染患者尿培养中的常见病原菌及其特殊类型对抗菌药物的耐药情况,为临床医生经验性治疗尿路感染提供参考依据。 方法 从浙江省人民医院信息系统数据库中收集2020年1月—2021年12月的尿液培养结果及其耐药情况,最终纳入3 770例尿路感染患者,并对分离出的病原菌与其药敏结果进行统计分析。 结果 本研究共计分离非重复菌株4 284株,其中革兰阴性菌2 746株(64.10%),革兰阳性菌875株(20.42%),真菌385株(8.99%),支原体278株(6.49%)。分离菌株前4位分别为:大肠埃希菌、肺炎克雷伯菌、屎肠球菌、粪肠球菌。其中产超广谱β-内酰胺酶类菌以及耐碳青霉烯类菌的耐药率明显高于普通病原菌,前者对β-内酰胺类、喹诺酮类抗菌药物耐药率较普通病原菌明显升高,对加酶抑制剂抗生素及碳青霉烯类抗菌药物保持良好的抗菌活性,后者仅对替加环素、阿米卡星少量抗菌药物表现良好的敏感性。 结论 尿路感染中最常见的病原菌仍为革兰阴性菌,产超广谱β-内酰胺酶类菌、耐碳青霉烯类肠杆菌等耐药菌较前增多,临床上初次使用抗菌药物可参考本研究结果进行经验性治疗,获取尿培养结果后再根据病原菌耐药情况酌情更换抗菌药物。 Abstract:Objective To investigate the antimicrobial resistance of common pathogenic bacteria and their special types in urine culture of urinary tract infection (UTI) patients, and to provide reference for clinical workers in the empirical treatment of urinary tract infection. Methods The urine culture results and drug resistance were collected from the information system database of Zhejiang Provincial People's Hospital from January 2020 to December 2021, and 3 770 UTI patients were eventually included. The isolated pathogens and their drug susceptibility results were statistically analyzed. Results A total of 4 284 non-duplicate strains were isolated in this study. There were 2 746 strains (64.10%) of Gram-negative bacteria, 875 strains (20.42%) of Gram-positive bacteria, 385 strains (8.99%) of fungi and 278 strains (6.49%) of mycoplasma. The top four isolates were Escherichia coli, Klebsiella pneumoniae, Enterococcus faecium and Enterococcus faecalis. Among them, the drug resistance rate of the bacteria producing extended-spectrum β-lactamases and carbapenem resistant bacteria was significantly higher than that of common pathogens. The resistance rate of the former to β-lactam and quinolone antibacterial drugs was significantly higher than that of common pathogens, and it maintained good antibacterial activity against antibiotics and carbapenems with enzyme inhibitors. The latter only showed good sensitivity to tigecycline and amikacin. Conclusion The most common pathogen in urinary tract infection is still gram-negative bacteria. Drug-resistant bacteria such as producing extended-spectrum β-lactamases and carbapenem resistant bacteria are more than before. Clinical initial use of antibacterial drugs can refer to the results of this study for empirical treatment, and antibacterial drugs can be changed according to the drug resistance of pathogenic bacteria after the results of urine culture are available. -
表 1 常见革兰阴性菌对抗菌药物的耐药率和敏感率(%)
Table 1. Resistance rate and sensitivity rate of common gram-negative bacteria to antibiotics (%)
抗菌药物 大肠埃希菌(1 375株) 肺炎克雷伯菌(449株) 奇异变形杆菌(315株) 铜绿假单胞菌(208株) R S R S R S R S 氨苄西林 77.60 20.36 - - 66.98 33.02 - - 氨苄西林/舒巴坦 42.91 48.58 61.25 37.19 52.38 46.67 - - 哌拉西林/他唑巴坦 1.82 96.80 41.43 56.35 12.70 86.67 40.87 52.40 头孢替坦 2.62 96.73 41.43 58.57 12.38 87.62 - - 头孢吡肟 12.36 80.44 43.43 53.23 15.24 69.21 41.83 51.92 头孢他啶 19.85 79.27 50.11 49.22 16.51 80.95 43.27 52.40 头孢他啶/阿维巴坦 0.51 99.49 4.45 95.55 0.32 99.68 3.85 96.15 头孢唑啉 49.09 50.91 61.25 38.75 55.87 44.13 - - 头孢曲松 47.93 51.85 58.80 40.98 45.71 52.06 - - 头孢哌酮/舒巴坦 1.96 91.20 42.98 49.89 1.59 94.60 44.71 48.08 亚胺培南 1.24 98.55 39.42 59.47 5.08 86.98 46.15 49.04 美洛培南 1.16 98.76 39.20 59.69 3.17 96.19 45.19 54.33 厄他培南 1.53 98.11 40.31 59.47 4.76 89.84 - - 氨曲南 30.11 69.31 52.34 47.44 16.19 83.81 / / 阿米卡星 1.89 97.67 28.29 71.71 2.22 95.56 2.40 94.71 妥布霉素 10.11 67.78 36.97 51.45 13.33 44.44 5.29 92.79 庆大霉素 30.55 68.58 43.43 55.01 20.95 47.30 6.25 89.42 替加环素 0.07 99.85 1.78 79.73 - - - - 环丙沙星 61.96 32.07 66.37 30.51 63.17 35.24 48.56 47.60 左旋氧氟沙星 55.71 15.64 52.12 30.73 53.65 30.79 49.04 49.52 复方新诺明 43.35 56.51 42.32 57.68 65.40 34.60 - - 磷霉素 4.15 95.49 27.39 58.57 15.56 68.57 39.42 49.04 呋喃妥因 2.40 91.93 57.68 13.14 - - / / 注:R为耐药率,S为敏感率,“-”表示天然耐药,“/”表示该细菌对该抗菌药物未做药敏。 表 2 产β-内酰胺酶类菌对抗菌药物的耐药率和敏感率(%)
Table 2. Resistance rate and sensitivity rate of β-lactamase producing bacteria to antibiotics (%)
抗菌药物 大肠埃希菌(609株) 肺炎克雷伯杆菌(86株) R S R S 氨苄西林 99.18 0.82 - - 氨苄西林/舒巴坦 61.74 31.69 82.56 16.28 哌拉西林/他唑巴坦 0.33 97.87 4.65 84.88 头孢替坦 0.66 98.69 3.49 96.51 头孢吡肟 22.99 62.40 30.23 62.79 头孢他啶 36.78 61.41 43.02 53.49 头孢他啶/阿维巴坦 0 100.00 0 100.00 头孢唑啉 98.03 1.97 96.51 3.49 头孢曲松 98.19 1.81 88.37 11.63 头孢哌酮/舒巴坦 0.66 86.37 11.63 54.65 亚胺培南 0.16 99.51 0 97.67 美洛培南 0 100.00 0 98.84 厄他培南 0 100.00 0 98.84 氨曲南 61.25 37.77 62.79 37.21 阿米卡星 2.79 96.72 3.49 96.51 妥布霉素 14.61 60.10 12.79 46.51 庆大霉素 36.45 62.40 41.86 55.81 替加环素 0 100.00 3.49 82.56 环丙沙星 80.13 14.94 89.53 6.98 左旋氧氟沙星 74.22 5.91 56.98 9.30 复方新诺明 52.71 46.96 66.28 33.72 磷霉素 6.90 92.45 8.14 81.40 呋喃妥因 3.45 89.00 54.65 16.28 注:R为耐药率,S为敏感率,“-”表示天然耐药。 表 3 耐碳青霉烯类菌对抗菌药物的耐药率和敏感率(%)
Table 3. Resistance rate and sensitivity rate of carbapenem-resistant bacteria to antibiotics (%)
抗菌药物 大肠埃希菌(25株) 肺炎克雷伯杆菌(176株) 铜绿假单胞菌(95株) R S R S R S 氨苄西林 96.00 4.00 - - - - 氨苄西林/舒巴坦 88.00 8.00 98.86 1.14 - - 哌拉西林/他唑巴坦 68.00 24.00 98.30 1.70 83.16 9.47 头孢替坦 88.00 8.00 98.86 1.14 - - 头孢吡肟 68.00 16.00 90.34 4.55 85.26 10.53 头孢他啶 100.00 0 98.86 1.14 86.32 11.58 头孢他啶/阿维巴坦 28.00 72.00 9.66 90.34 7.37 92.63 头孢唑啉 100.00 0 98.30 1.70 - - 头孢曲松 100.00 0 99.43 0.57 - - 头孢哌酮/舒巴坦 68.00 16.00 98.86 0.57 92.63 4.21 亚胺培南 64.00 36.00 96.02 2.27 97.89 0 美洛培南 64.00 36.00 95.45 2.84 96.84 3.16 厄他培南 80.00 20.00 97.73 2.27 - - 氨曲南 68.00 28.00 96.59 3.41 / / 阿米卡星 20.00 72.00 65.91 34.09 4.21 92.63 妥布霉素 64.00 28.00 80.68 13.64 6.32 92.63 庆大霉素 68.00 32.00 80.68 17.05 7.37 86.32 替加环素 4.00 92.00 2.27 65.34 - - 环丙沙星 84.00 8.00 99.43 0 89.47 7.37 左旋氧氟沙星 76.00 8.00 92.61 0.57 89.47 8.42 复方新诺明 52.00 48.00 53.41 46.59 - - 磷霉素 20.00 80.00 58.52 19.32 71.58 26.32 呋喃妥因 24.00 68.00 87.50 3.98 / / 注:R为耐药率,S为敏感率,“-”表示天然耐药,“/”表示该细菌对该抗菌药物未做药敏。 表 4 常见革兰阳性菌对抗菌药物的耐药率和敏感率(%)
Table 4. Resistance rate and sensitivity rate of common gram-positive bacteria to antibiotics (%)
抗菌药物 屎球肠菌(332株) 粪球肠菌(316株) 无乳链球菌(B群)(103株) R S R S R S 青霉素G 93.67 6.02 3.80 96.20 0.97 99.03 氨苄西林 92.47 7.53 1.27 98.73 0 100.00 高浓度庆大霉素 29.52 70.48 34.18 65.82 / / 高浓度链霉素 40.36 59.64 21.20 78.80 / / 红霉素 90.66 7.23 60.44 9.49 / / 四环素 21.69 78.01 80.06 19.62 60.19 37.86 替加环素 4.22 95.78 0 100.00 / / 克林霉素 - - - - 63.11 34.95 万古霉素 0 100.00 0 99.68 0 100.00 环丙沙星 95.18 3.01 34.81 61.39 / / 左旋氧氟沙星 94.58 5.42 34.81 63.92 / / 莫西沙星 / / / / 51.46 48.54 利奈唑胺 0 99.10 7.91 88.61 0.97 99.03 呋喃妥因 68.37 21.69 0.95 96.52 / / 奎奴普丁/达福普汀 0.60 98.49 - - 0.97 99.03 注:R为耐药率,S为敏感率,“-”表示天然耐药,“/”表示该细菌对该抗菌药物未做药敏。 -
[1] PATEL R, POLAGE C, DIEN B J, et al. Envisioning future urinary tract infection diagnostics[J]. Clin Infect Dis, 2022, 74(7): 1284-1292. doi: 10.1093/cid/ciab749 [2] DEMIR M, KAZANASMAZ H. Uropathogens and antibiotic resistance in the community and hospital-induced urinary tract infected children[J]. J Glob Antimicrob Resist, 2020, 20: 68-73. doi: 10.1016/j.jgar.2019.07.019 [3] 石婷婷, 李双庆, 梁利波. 降钙素原在感染中的应用及研究进展[J]. 中华全科医学, 2018, 16(4): 620-625. doi: 10.16766/j.cnki.issn.1674-4152.000172SHI T T, LI S Q, LIANG L B. Application and research progress of procalcitonin in infection[J]. Chinese Journal of General Practice, 2018, 16(4): 620-625. doi: 10.16766/j.cnki.issn.1674-4152.000172 [4] 毛小强, 陈毓, 金晶. 血清降钙素原在急诊感染患者细菌感染病原学分型中的价值分析[J]. 中华全科医学, 2022, 20(1): 65-67, 75. doi: 10.16766/j.cnki.issn.1674-4152.002278MAO X Q, CHEN Y, JIN J. Value analysis of serum procalcitonin in etiological typing of bacterial infection in patients with emergency infection[J]. Chinese Journal of General Practice, 2022, 20(1): 65-67, 75. doi: 10.16766/j.cnki.issn.1674-4152.002278 [5] MAJUMDER M, MAHADI A, AHMED T, et al. Antibiotic resistance pattern of microorganisms causing urinary tract infection: a 10-year comparative analysis in a tertiary care hospital of Bangladesh[J]. Antimicrob Resist Infect Control, 2022, 11(1): 156. doi: 10.1186/s13756-022-01197-6 [6] 顾丽娜, 司元国, 马广雁, 等. 疑似尿路感染患者中段尿样本培养的病原菌分布和耐药性分析[J]. 中华医院感染学杂志, 2019, 29(18): 2787-2791.GU L N, SI Y G, MA G Y, et al. Analysis of the distribution and drug resistance of pathogenic bacteria cultured from midstream urine samples of patients with suspected urinary tract infection[J]. Chinese Journal of Nosocomiology, 2019, 29(18): 2787-2791. [7] 陈中举, 田磊, 杨为民, 等. 2016~2018年泌尿外科患者尿路感染病原菌分布及耐药性分析[J]. 临床泌尿外科杂志, 2020, 35(2): 103-107, 111.CHEN Z J, TIAN L, YANG W M, et al. Analysis of pathogen distribution and drug resistance of urinary tract infection in urology patients from 2016 to 2018[J]. Journal of Clinical Urology, 2020, 35(2): 103-107, 111. [8] 王金英. 2017—2019年某医院尿路感染病原菌分布及耐药性分析[J]. 河南医学研究, 2021, 30(11): 2085-2087. doi: 10.3969/j.issn.1004-437X.2021.11.062WANG J Y. Distribution and drug resistance of pathogenic bacteria of urinary tract infection in a hospital from 2017 to 2019[J]. Henan Medical Research, 2021, 30(11): 2085-2087. doi: 10.3969/j.issn.1004-437X.2021.11.062 [9] MUNOZ J, UHLEMANN A, BARASCH J. Innate bacteriostatic mechanisms defend the urinary tract[J]. Annu Rev Physiol, 2022, 84: 533-558. doi: 10.1146/annurev-physiol-052521-121810 [10] 解泽强, 陈亮, 张曼. 2016—2017年泌尿系感染病原菌特征分析[J]. 标记免疫分析与临床, 2018, 25(5): 610-615.XIE Z Q, CHEN L, ZHANG M. Analysis of pathogenic bacteria characteristics of urinary tract infection from 2016 to 2017[J]. Labeled Immunoassays and Clinical Medicine, 2018, 25(5): 610-615. [11] 张环, 樊璠, 毛彩萍. 2014—2019年浙江地区某肿瘤医院尿路感染病原菌的分布及耐药变迁[J]. 中国抗生素杂志, 2020, 45(10): 1053-1057. doi: 10.3969/j.issn.1001-8689.2020.10.015ZHANG H, FAN F, MAO C P. The distribution and drug resistance of pathogenic bacteria in urinary tract infection in a tumor hospital in Zhejiang from 2014 to 2019[J]. Chinese Journal of Antibiotics, 2020, 45(10): 1053-1057. doi: 10.3969/j.issn.1001-8689.2020.10.015 [12] DANIEL M, KELLER S, MOZAFARIHASHJIN M, et al. An implementation guide to reducing overtreatment of asymptomatic bacteriuria[J]. JAMA Intern Med, 2018, 178(2): 271-276. doi: 10.1001/jamainternmed.2017.7290 [13] 邢桂生. 泌尿外科住院患者泌尿系感染临床及病原菌调查[J]. 中国卫生检验杂志, 2019, 29(19): 2427-2430.XING G S. Clinical and pathogenic investigation of urinary tract infection in hospitalized patients in urology[J]. Chinese Journal of Health Laboratory Technology, 2019, 29(19): 2427-2430. [14] JEAN S, HARNOD D, HSUEH P. Global threat of carbapenem-resistant Gram-negative bacteria[J]. Front Cell Infect Microbiol, 2022, 12: 823684. DOI: 10.3389/fcimb.2022.823684. [15] ZHANG R, DONG N, HUANG Y, et al. Evolution of tigecycline- and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract[J]. Emerg Microbes Infect, 2018, 7(1): 127. [16] 龙姗姗, 喻华, 黄湘宁, 等. 2015—2018年四川省细菌耐药监测网尿液标本细菌分布及耐药性分析[J]. 中华医院感染学杂志, 2020, 30(7): 1066-1071.LONG S S, YU H, HUANG X N, et al. Analysis of bacterial distribution and drug resistance in urine specimens of Sichuan Provincial Bacterial Resistance Monitoring Network from 2015 to 2018[J]. Chinese Journal of Nosocomiology, 2020, 30(7): 1066-1071. [17] 杨书才, 唐景云, 周杰, 等. 6 493例泌尿生殖道感染患者解脲支原体和人型支原体感染情况及药敏试验分析[J]. 检验医学与临床, 2019, 16(13): 1888-1891. doi: 10.3969/j.issn.1672-9455.2019.13.028YANG S C, TANG J Y, ZHOU J, et al. Analysis of Ureaplasma urealyticum and Mycoplasma hominis infection and drug sensitivity test in 6 493 patients with urogenital tract infection[J]. Laboratory Medicine and Clinic, 2019, 16(13): 1888-1891. doi: 10.3969/j.issn.1672-9455.2019.13.028
计量
- 文章访问数: 210
- HTML全文浏览量: 268
- PDF下载量: 21
- 被引次数: 0