留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成孔蛋白E依赖性细胞焦亡在肾脏疾病中的作用

邓天玉 王晓燕

邓天玉, 王晓燕. 成孔蛋白E依赖性细胞焦亡在肾脏疾病中的作用[J]. 中华全科医学, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517
引用本文: 邓天玉, 王晓燕. 成孔蛋白E依赖性细胞焦亡在肾脏疾病中的作用[J]. 中华全科医学, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517
DENG Tianyu, WANG Xiaoyan. The role of GSDME-dependent pyroptosis in renal diseases[J]. Chinese Journal of General Practice, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517
Citation: DENG Tianyu, WANG Xiaoyan. The role of GSDME-dependent pyroptosis in renal diseases[J]. Chinese Journal of General Practice, 2024, 22(5): 845-849. doi: 10.16766/j.cnki.issn.1674-4152.003517

成孔蛋白E依赖性细胞焦亡在肾脏疾病中的作用

doi: 10.16766/j.cnki.issn.1674-4152.003517
基金项目: 

国家自然科学基金项目 81970605

详细信息
    通讯作者:

    王晓燕, E-mail: xiaoyan.wang@benqmedicalcenter.com

  • 中图分类号: R587.2 R692

The role of GSDME-dependent pyroptosis in renal diseases

  • 摘要: 由成孔蛋白(gasdermins)家族成员介导的细胞焦亡(pyroptosis)是一种新型的细胞程序性死亡形式, 其最初被描述为半胱天冬酶1和炎症小体依赖性细胞死亡途径, 典型特征是膜完整性丧失和大量促炎因子的释放。成孔蛋白E(gasdermin E, GSDME)是gasdermins蛋白家族中的重要成员之一, 最新研究发现它亦是参与细胞焦亡发生的一种关键调节蛋白, 其在大多数正常组织细胞中表达, 在特定的条件下可以将细胞凋亡诱导转变为细胞焦亡。肾脏疾病是危害人类身心健康的刽子手之一。近年来, GSDME依赖性细胞焦亡与肾脏疾病之间相关性被研究人员逐步证实, 深入了解GSDME依赖性细胞焦亡在肾脏疾病中的作用途径以及在此过程中各种关键分子的潜在有效抑制剂, 有利于进一步理解相关疾病的发病机制, 发现它们诊断和治疗新靶点。本文回溯了GSDME依赖性细胞焦亡与急性肾损伤、糖尿病肾病、肾癌、梗阻性肾病和狼疮肾病等肾脏疾病相关的研究, 总结GSDME依赖性细胞焦亡在这些肾脏疾病中的作用、机制以及相关药物干预等的研究进展, 以期为临床和基础研究提供参考。

     

  • 图  1  与焦亡相关的3种通路

    Figure  1.  Three pathways related to burn fatalities

  • [1] DUBYAK G R, MILLER B A, PEARLMAN E. Pyroptosis in neutrophils: multimodal integration of inflammasome and regulated cell death signaling pathways[J]. Immunol Rev, 2023, 314(1): 229-249. doi: 10.1111/imr.13186
    [2] BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9): 2768-2782. doi: 10.1016/j.apsb.2021.02.006
    [3] WEN S, WANG Z H, ZHANG C X, et al. Caspase-3 promotes diabetic kidney disease through Gasdermin E-mediated progression to secondary necrosis during apoptosis[J]. Diabetes Metab Syndr Obes, 2020, 13(10): 313-323.
    [4] CHAI Q Y, YU S S, ZHONG Y Z, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin[J]. Science, 2022, 378(6616): eabq0132. DOI: 10.1126/science.abq0132.
    [5] BARNETT K C, LI S R, LIANG K X, et al. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases[J]. Cell, 2023, 186(11): 2288-2312. doi: 10.1016/j.cell.2023.04.025
    [6] XIA S Y, ZHANG Z B, MAGUPALLI V G, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1[J]. Nature, 2021, 593(7860): 607-611. doi: 10.1038/s41586-021-03478-3
    [7] KUMARI P, VASUDEVAN S O, RUSSO A J, et al. Host extracellular vesicles confer cytosolic access to systemic LPS licensing non-canonical inflammasome sensing and pyroptosis[J]. Nat Cell Biol, 2023, 25(12): 1860-1872. doi: 10.1038/s41556-023-01269-8
    [8] ZHANG X W, ZHANG P, AN L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413. doi: 10.1016/j.apsb.2020.06.015
    [9] MA F X, GHIMIRE L, REN Q, et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death[J]. Nat Commun, 2024, 15(1): 386. DOI: 10.1038/s41467-023-44669-y.
    [10] KANG L L, DAI J H, WANG Y F, et al. Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme pyroptotic pathways rescues silicosis in mice[J]. PLoS Genet, 2022, 18(12): e1010515. DOI: 10.1371/journal.pgen.1010515.
    [11] HU Y Q, WEN Q L, CAI Y F, et al. Alantolactone induces concurrent apoptosis and GSDME-dependent pyroptosis of anaplastic thyroid cancer through ROS mitochondria-dependent caspase pathway[J]. Phytomedicine, 2023, 108(1): 154528. DOI: 10.1016/j.phymed.2022.154528.
    [12] WEI Y Y, LAN B D, ZHENG T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis[J]. Nat Commun, 2023, 14(1): 929. DOI: 10.1038/s41467-023-36614-w.
    [13] NEEL D V, BASU H, GUNNER G, et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration[J]. Neuron, 2023, 111(8): 1222-1240. e9. DOI: 10.1016/j.neuron.2023.02.019.
    [14] REN C X, BAO X W, LU X Z, et al. Complanatoside A targeting NOX4 blocks renal fibrosis in diabetic mice by suppressing NLRP3 inflammasome activation and autophagy[J]. Phytomedicine, 2022, 104(9): 154310. DOI: 10.1016/j.phymed.2022.154310.
    [15] 韩振元, 王晓燕. cGAS-STING通路在肾脏疾病中的研究进展[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202312030.htm
    [16] SEARS S M, SISKIND L J. Potential therapeutic targets for cisplatin-induced kidney injury: lessons from other models of AKI and fibrosis[J]. J Am Soc Nephrol, 2021, 32(7): 1559-1567. doi: 10.1681/ASN.2020101455
    [17] SHEN X J, WANG H B, WENG C H, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186. DOI: 10.1038/s41419-021-03458-5.
    [18] XIA W W, LI Y Y, WU M Y, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. DOI: 10.1038/s41419-021-03431-2.
    [19] AI Y L, WANG W J, LIU F J, et al. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P[J]. Cell Res, 2023, 33(12): 904-922. doi: 10.1038/s41422-023-00848-6
    [20] WANG Z, GU Z Y, HOU Q, et al. Zebrafish GSDMEb cleavage-gated pyroptosis drives septic acute kidney injury in vivo[J]. J Immunol, 2020, 204(7): 1929-1942. doi: 10.4049/jimmunol.1901456
    [21] DING Z H, ZHAO J, WANG X F, et al. Total extract of Abelmoschus manihot L. alleviates uric acid-induced renal tubular epithelial injury via inhibition of caspase-8/caspase-3/NLRP3/GSDME signaling[J]. Front Pharmacol, 2022, 13(8): 907980. DOI: 10.3389/fphar.2022.907980.
    [22] ZHANG C Y, WANG X R, NIE G H, et al. In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via NLRP3/Caspase-1-mediated pyroptosis in ducks[J]. J Inorg Biochem, 2021, 224(11): 111584. DOI: 10.1016/j.jinorgbio.2021.111584.
    [23] SHENG Y T, ZHANG C P, CAI D D, et al. 2, 2 ', 4, 4 ' -Tetrabromodiphenyl ether and cadmium co-exposure activates aryl hydrocarbon receptor pathway to induce ROS and GSDME-dependent pyroptosis in renal tubular epithelial cells[J]. Environ Toxicol, 2024, 39(1): 289-298. doi: 10.1002/tox.23957
    [24] LIU W N, GAN Y J, DING Y, et al. Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury[J]. Ecotoxicol Environ Saf, 2022, 242(7): 113881. DOI: 10.1016/j.ecoenv.2022.113881.
    [25] LI S Y, FENG L F, LI G R, et al. GSDME-dependent pyroptosis signaling pathway in diabetic nephropathy[J]. Cell Death Discov, 2023, 9(1): 156. DOI: 10.1038/s41420-023-01452-8.
    [26] WU M Y, XIA W W, JIN Q Q, et al. Gasdermin E deletion attenuates ureteral obstruction- and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction[J]. Front Cell Dev Biol, 2021, 9(10): 754134. DOI: 10.3389/fcell.2021.754134.
    [27] LUO G H, HE Y, YANG F Y, et al. Blocking GSDME-mediated pyroptosis in renal tubular epithelial cells alleviates disease activity in lupus mice[J]. Cell Death Discov, 2022, 8(1): 113. DOI: 10.1038/s41420-022-00848-2.
    [28] YAO L, LI J N, XU Z J, et al. GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2022, 14(6): 2758-2774.
    [29] LI Y S, YUAN Y, HUANG Z X, et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy[J]. Cell Death Differ, 2021, 28(8): 2333-2350. doi: 10.1038/s41418-021-00755-6
    [30] ZHANG Y, YIN K, WANG D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes[J]. Sci Total Environ, 2022, 840(9): 156727. DOI: 10.1016/j.scitotenv.2022.156727.
    [31] WU M, YANG Z F, ZHANG C Y, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J]. Metabolism, 2021, 118(3): 154748. DOI: 10.1016/j.metabol.2021.154748.
    [32] HAGMANN H, KHAYYAT N H, MATIN M, et al. Capsazepine (CPZ) inhibits TRPC6 conductance and is protective in adriamycin-induced nephropathy and diabetic glomerulopathy[J]. Cells, 2023, 12(2): 271. DOI: 10.3390/cells12020271.
    [33] ZHAI Z Q, YANG F Y, XU W C, et al. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-induced Caspase 3/Gasdermin E-Mediated pyroptosis[J]. Arthritis Rheumatol, 2022, 74(3): 427-440. doi: 10.1002/art.41963
    [34] ZHANG B L, YU P, SU E Y, et al. Inhibition of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and atherosclerotic lesion development in ApoE-/- mice[J]. Front Pharmacol, 2023, 14(8): 1184588. DOI: 10.3389/fphar.2023.1184588.
    [35] FIROOZPOUR L, GAO L, MOGHIMI S, et al. Efficient synthesis, biological evaluation, and docking study of isatin based derivatives as caspase inhibitors[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1674-1684. doi: 10.1080/14756366.2020.1809388
    [36] XU W F, ZHANG Q, DING C J, et al. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure[J]. Acta Pharmacol Sin, 2021, 42(1): 68-76. doi: 10.1038/s41401-020-0434-2
    [37] ZHANG X M, XIE L, LONG J Y, et al. Salidroside: a review of its recent advances in synthetic pathways and pharmacological properties[J]. Chem Biol Interact, 2021, 339(3): 109268. DOI: 10.1016/j.cbi.2020.109268.
    [38] WANG X H, QIAN J, MENG Y, et al. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways[J]. Heliyon, 2023, 9(2): e13225. DOI: 10.1016/j.heliyon.2023.e13225.
    [39] HU L, CHEN M, CHEN X R, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. DOI: 10.1038/s41419-020-2476-2.
  • 加载中
图(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  46
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 网络出版日期:  2024-07-20

目录

    /

    返回文章
    返回