留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨质疏松症与菌群的相关性及机制研究进展

牟亚朋 庄向华 宋玉文 许沛晨 娄能俊 陈诗鸿

牟亚朋, 庄向华, 宋玉文, 许沛晨, 娄能俊, 陈诗鸿. 骨质疏松症与菌群的相关性及机制研究进展[J]. 中华全科医学, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561
引用本文: 牟亚朋, 庄向华, 宋玉文, 许沛晨, 娄能俊, 陈诗鸿. 骨质疏松症与菌群的相关性及机制研究进展[J]. 中华全科医学, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561
MU Yapeng, ZHUANG Xianghua, SONG Yuwen, XU Peichen, LOU Nengjun, CHEN Shihong. The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora[J]. Chinese Journal of General Practice, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561
Citation: MU Yapeng, ZHUANG Xianghua, SONG Yuwen, XU Peichen, LOU Nengjun, CHEN Shihong. The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora[J]. Chinese Journal of General Practice, 2024, 22(6): 1038-1042. doi: 10.16766/j.cnki.issn.1674-4152.003561

骨质疏松症与菌群的相关性及机制研究进展

doi: 10.16766/j.cnki.issn.1674-4152.003561
基金项目: 

山东省自然科学基金联合基金项目 ZR2021LSW016

详细信息
    通讯作者:

    陈诗鸿,E-mail:chenshihong@sdu.edu.cn

  • 中图分类号: R681  R37

The advancing research progress of the correlation and mechanism between osteoporosis and bacterial flora

  • 摘要: 骨质疏松症(osteoporosis,OP)患病率不断升高,若其并发脆性骨折严重影响患者生活质量,已成为重要的公共健康问题。已有的研究结果显示,OP与菌群失调有密切联系,菌群失调参与多种全身性疾病,越来越引起人们的重视。肠道菌群、口腔菌群作为人体菌群重要组成部分,可以引起多种生理、病理改变。本文综述菌群与OP相关基础研究、临床研究,总结肠道菌群和口腔菌群在OP中的发病机制和表征菌群变化,关注具体菌种、菌属的作用。菌群主要通过介导激素作用、产生特定代谢物、诱导免疫细胞分化以及炎症因子水平改变影响OP发病相关通路。不同菌属参与疾病发病过程呈现不同作用,肠道菌群中乳酸杆菌属、双歧杆菌属、梭菌属等具有保护作用,沙雷氏菌属等是危险因素; 口腔菌群中TM7、乳酸杆菌属可能具有保护作用,放线菌、福赛斯坦纳菌可能通过炎症反应促进骨吸收。此外,部分菌属具有维持菌群平衡的作用。本文对OP与菌群的联系、相互作用机制进行回顾总结,以期为OP治疗提供思路与参考。

     

  • [1] PODLESNY D, FRICKE W F. Strain inheritance and neonatal gut microbiota development: a meta-analysis[J]. Int J Med Microbiol, 2021, 311(3): 151483. DOI: 10.1016/j.ijmm.2021.151483.
    [2] VALLES-COLOMER M, BLANCO-MÍGUEZ A, MANGHI P, et al. The person-to-person transmission landscape of the gut and oral microbiomes[J]. Nature, 2023, 614(7946): 125-135. doi: 10.1038/s41586-022-05620-1
    [3] BURCELIN R. Gut microbiota and immune crosstalk in metabolic disease[J]. Mol Metab, 2016, 5(9): 771-781. doi: 10.1016/j.molmet.2016.05.016
    [4] DEBRÉ P, LE GALL J Y, Commission I (Biologie). Intestinal microbiota[J]. Bull Acad Natl Med, 2014, 198(9): 1667-1684.
    [5] 赵萌, 杨轶童, 李翰文, 等. 肠道微生物菌群与川崎病关系研究进展[J]. 陕西医学杂志, 2024, 53(2): 270-273, 281. doi: 10.3969/j.issn.1000-7377.2024.02.027

    ZHAO M, YANG Y T, LI H W, et al. Research progress on relationship between gut microbiota and Kawasaki disease[J]. Shanxi Medical Journal, 2024, 53(2): 270-273, 281. doi: 10.3969/j.issn.1000-7377.2024.02.027
    [6] 中华医学会骨质疏松和骨矿盐疾病分会, 章振林. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学, 2023, 26(14): 1671-1691. doi: 10.12114/j.issn.1007-9572.2023.0121

    Chinese Society of Osteoporosis and Bone Mineral Salt Diseases, ZHANG Z L. Guidelines for the Diagnosis and Treatment of Primary Osteoporosis(2022)[J]. Chinese General Practice, 2023, 26(14): 1671-1691. doi: 10.12114/j.issn.1007-9572.2023.0121
    [7] FALONY G, VIEIRA-SILVA S, RAES J. Microbiology meets big data: the case of gut microbiota-derived trimethylamine[J]. Annu Rev Microbiol, 2015, 69: 305-321. doi: 10.1146/annurev-micro-091014-104422
    [8] 朱双, 汤帅, 丁刚. 口腔菌群与口腔疾病及全身性疾病关系的研究进展[J]. 中国医药导报, 2023, 20(18): 35-38, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202318008.htm

    ZHU S, TANG S, DING G. Research progress on the relationship between oral flora and oral diseases and systemic diseases[J]. China Medicine Herald, 2023, 20(18): 35-38, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202318008.htm
    [9] 何姣姣, 陈玉林, 张敏, 等. 肠道菌群在骨质疏松症发病机制中的研究[J]. 中国骨质疏松杂志, 2023, 29(8): 1197-1202. doi: 10.3969/j.issn.1006-7108.2023.08.018

    HE J J, CHEN Y L, ZHANG M, et al. Study on the role of intestinal microflora in the pathogenesis of osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(8): 1197-1202. doi: 10.3969/j.issn.1006-7108.2023.08.018
    [10] ALQRANEI M S, SENBANJO L T, ALJOHANI H, et al. Lipopolysaccharide-TLR-4 axis regulates osteoclastogenesis independent of RANKL/RANK signaling[J]. BMC Immunol, 2021, 22(1): 23. doi: 10.1186/s12865-021-00409-9
    [11] 陈浩彬, 罗世城, 曹祚, 等. 应用16S rDNA扩增子序列分析去卵巢骨丢失小鼠口腔菌群的变化[J]. 解放军医学院学报, 2023, 44(4): 401-407, 433. https://www.cnki.com.cn/Article/CJFDTOTAL-JYJX202304013.htm

    CHEN H B, LUO S C, CAO Z, et al. Oral microbiota changes of bone loss mice induced by ovariectomy via 16S rDNA amplicon sequencing[J]. Journal of the PLA Medical College, 2023, 44(4): 401-407, 433. https://www.cnki.com.cn/Article/CJFDTOTAL-JYJX202304013.htm
    [12] LI J Y, CHASSAING B, TYAGI A M, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. J Clin Invest, 2016, 126(6): 2049-2063. doi: 10.1172/JCI86062
    [13] 祝启丽, 刘洋. 青春期肠道菌群特征及性别二态性研究进展[J]. 中国学校卫生, 2023, 44(11): 1752-1755, 1760. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS202311034.htm

    ZHU Q L, LIU Y. Recent advances in intestinal flora characteristics and sexual dimorphism during puberty[J]. Chinese Journal of School Health, 2023, 44(11): 1752-1755, 1760. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS202311034.htm
    [14] OOI J H, LI Y, ROGERS C J, et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis[J]. J Nutr, 2013, 143(10): 1679-1686. doi: 10.3945/jn.113.180794
    [15] OHLSSON C, ENGDAHL C, FÅK F, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss[J]. PLoS One, 2014, 9(3): e92368. DOI: 10.1371/journal.pone.0092368.
    [16] 武士清. 人甲状旁腺激素对糖尿病大鼠骨质疏松的影响及其分子机制的研究[D]. 济南: 山东大学, 2020.

    WU S Q, Effects of human parathyroid hormone on osteoporosis in diabetic rats and its molecular mechanism[D]. Jinan: Shandong University, 2020.
    [17] LI J Y, YU M, PAL S, et al. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota[J]. J Clin Invest, 2020, 130(4): 1767-1781. doi: 10.1172/JCI133473
    [18] SJÖGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice[J]. J Bone Miner Res, 2012, 27(6): 1357-1367. doi: 10.1002/jbmr.1588
    [19] YAN J, HERZOG J W, TSANG K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci USA, 2016, 113(47): E7554-E7563.
    [20] ZHAO W, LIU Y, CAHILL C M, et al. The role of T cells in osteoporosis, an update[J]. Int J Clin Exp Pathol, 2009, 2(6): 544-552.
    [21] ATARASHI K, TANOUE T, SHIMA T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. doi: 10.1126/science.1198469
    [22] ZHANG J, MOTYL K J, IRWIN R, et al. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri[J]. Endocrinology, 2015, 156(9): 3169-3182. doi: 10.1210/EN.2015-1308
    [23] MUTUŞ R, KOCABAGLI N, ALP M, et al. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers[J]. Poult Sci, 2006, 85(9): 1621-1625. doi: 10.1093/ps/85.9.1621
    [24] 袁鹏, 董万涛, 张杰, 等. 肠道微生物代谢产物丁酸对骨代谢机制的研究进展[J]. 中国骨质疏松杂志, 2023, 29(11): 1712-1716. doi: 10.3969/j.issn.1006-7108.2023.11.027

    YUAN P, DONG W T, ZHANG J, et al. Research progress on the mechanism of butyric acid, a metabolic product of gut microbiota, on bone metabolism[J]. Chinese Journal of Osteoporosis, 2023, 29(11): 1712-1716. doi: 10.3969/j.issn.1006-7108.2023.11.027
    [25] AKINSUYI O S, ROESCH L F W. Meta-analysis reveals compositional and functional microbial changes associated with osteoporosis[J]. Microbiol Spectr, 2023, 11(3): e0032223. DOI: 10.1128/spectrum.00322-23.
    [26] CHE Y T, YANG J Z, TANG F, et al. New function of cholesterol oxidation products involved in osteoporosis pathogenesis[J]. Int J Mol Sci, 2022, 23(4): 2020. DOI: 10.3390/ijms23042020.
    [27] KAJIMURA D, HINOI E, FERRON M, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual[J]. J Exp Med, 2011, 208(4): 841-851. doi: 10.1084/jem.20102608
    [28] PAWLAK D, DOMANIEWSKI T, ZNORKO B, et al. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease[J]. Bone, 2017, 105: 1-10. doi: 10.1016/j.bone.2017.08.004
    [29] CHAO C K, ZEISEL S H. Formation of trimethylamine from dietary choline by Streptococcus sanguis Ⅰ, which colonizes the mouth[J]. J Nutr Biochem, 1990, 1(2): 89-97. doi: 10.1016/0955-2863(90)90055-P
    [30] 赵阳婷, 陈重阳, 潘斌晶, 等. 三甲胺N-氧化物: 骨质疏松治疗的潜在靶点[J]. 中国临床药理学与治疗学, 2023, 28(10): 1161-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202310010.htm

    ZHAO Y T, CHEN C Y, PAN B J, et al. Trimethylamine N-oxide: a potential target for osteoporosis treatment[J]. Chinese Clinical Pharmacology and Therapeutics, 2023, 28(10): 1161-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202310010.htm
    [31] SUN Y, ZHANG H J, CHEN R, et al. 16S rDNA analysis of osteoporotic rats treated with osteoking[J]. J Med Microbiol, 2022, 71(6). DOI: 10.1099/jmm.0.001552.
    [32] ZHANG R K, YAN K, CHEN H F, et al. Anti-osteoporotic drugs affect the pathogenesis of gut microbiota and its metabolites: a clinical study[J]. Front Cell Infect Microbiol, 2023, 13: 1091083. DOI: 10.3389/fcimb.2023.1091083.
    [33] RIAHI H S, HEIDARIEH P, FATAHI-BAFGHI M. Genus Pseudonocardia: what we know about its biological properties, abilities and current application in biotechnology[J]. J Appl Microbiol, 2022, 132(2): 890-906. doi: 10.1111/jam.15271
    [34] WOO C Y, KIM J. Variovorax terrae sp. nov. Isolated from soil with potential antioxidant activity[J]. J Microbiol Biotechnol, 2022, 32(7): 855-861. doi: 10.4014/jmb.2205.05018
    [35] BRAUN B, RICHERT I, SZEWZYK U. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe[J]. J Microbiol Methods, 2009, 79(1): 37-43. doi: 10.1016/j.mimet.2009.07.014
    [36] HUANG R, LIU P, BAI Y G, et al. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis[J]. J Zhejiang Univ Sci B, 2022, 23(12): 1002-1013. doi: 10.1631/jzus.B2200344
    [37] LIANG H L, JI K, GE X P, et al. Methionine played a positive role in improving the intestinal digestion capacity, anti-inflammatory reaction and oxidation resistance of grass carp, Ctenopharyngodon idella, fry[J]. Fish Shellfish Immunol, 2022, 128: 389-397. doi: 10.1016/j.fsi.2022.07.066
    [38] JONES M L, MARTONI C J, PRAKASH S. Oral supplementation with probiotic L. reuteri NCIMB 30 242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial[J]. J Clin Endocrinol Metab, 2013, 98(7): 2944-2951. doi: 10.1210/jc.2012-4262
    [39] 周冬燕, 陆瑶伽, 蔡琪. 更年期女性因骨质疏松导致牙齿脱落的影响因素分析[J]. 中国妇幼保健, 2022, 37(6): 1121-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB202206044.htm

    ZHOU D Y, LU Y J, CAI Q. Analysis of factors affecting tooth loss due to osteoporosis in menopausal women[J]. China Maternal and Child Health, 2022, 37(6): 1121-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB202206044.htm
    [40] HERNÁNDEZ-VIGUERAS S, MARTÍNEZ-GARRIGA B, SÁNCHEZ M C, et al. Oral microbiota, periodontal status, and osteoporosis in postmenopausal females[J]. J Periodontol, 2016, 87(2): 124-133. doi: 10.1902/jop.2015.150365
    [41] BRENNAN-CALANAN R M, GENCO R J, WILDING G E, et al. Osteoporosis and oral infection: independent risk factors for oral bone loss[J]. J Dent Res, 2008, 87(4): 323-327. doi: 10.1177/154405910808700403
    [42] FREIRE M, NELSON K E, EDLUND A. The oral host-microbial interactome: an ecological chronometer of health?[J]. Trends Microbiol, 2021, 29(6): 551-561. doi: 10.1016/j.tim.2020.11.004
    [43] 孙鹏飞, 张佳铭, 周铖, 等. 骨质疏松与口腔环境的相关性研究[J]. 医学信息, 2021, 34(9): 45-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202109012.htm

    SUN P F, ZHANG J M, ZHOU C, et al. Correlation study between osteoporosis and oral environment[J]. Medical Information, 2021, 34(9): 45-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202109012.htm
    [44] DUTZAN N, KAJIKAWA T, ABUSLEME L, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans[J]. Sci Transl Med, 2018, 10(463): eaat0797. DOI: 10.1126/scitranslmed.aat0797.
    [45] CERRATO A, ZANETTE G, BOCCUTO M, et al. Actinomyces and MRONJ: a retrospective study and a literature review[J]. J Stomatol Oral Maxillofac Surg, 2021, 122(5): 499-504. doi: 10.1016/j.jormas.2020.07.012
    [46] CHIPASHVILI O, UTTER D R, BEDREE J K, et al. Episymbiotic Saccharibacteria suppresses gingival inflammation and bone loss in mice through host bacterial modulation[J]. Cell Host Microbe, 2021, 29(11): 1649-1662. doi: 10.1016/j.chom.2021.09.009
    [47] 马成, 谢兴文, 李宁, 等. 特异性促炎症消退介质在骨病治疗中的研究进展[J]. 中国骨质疏松杂志, 2023, 29(9): 1379-1385. doi: 10.3969/j.issn.1006-7108.2023.09.022

    MA C, XIE X W, LI N, et al. Progress of specific pro-inflammatory and abrogative mediators in the treatment of bone diseases[J]. Chinese Journal of Osteoporosis, 2023, 29(9): 1379-1385. doi: 10.3969/j.issn.1006-7108.2023.09.022
    [48] 赖静, 余昕, 郭姗姗. 牙周炎和骨质疏松症相关性研究现状的探讨[J]. 现代医学与健康研究电子杂志, 2023, 7(15): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJD202315042.htm

    LAI J, YU X, GUO S S. Current status of research on the correlation between periodontitis and osteoporosis[J]. Electronic Journal of Modern Medicine and Health Research, 2023, 7(15): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJD202315042.htm
    [49] 欧阳嵘, 崔世维, 朱轶晴, 等. 2型糖尿病炎症因子水平与骨质疏松症的关系[J]. 中华全科医学, 2013, 11(5): 690-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201305017.htm

    OUYANG R, CUI S W, ZHU Y Q, et al. Relationship between inflammatory factor levels and osteoporosis in type 2 diabetes mellitus[J]. Chinese Journal of General Practice, 2013, 11(5): 690-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201305017.htm
    [50] 徐克, 樊金婷, 周晓辉. 原发性骨质疏松相关基因研究进展[J]. 临床医药文献电子杂志, 2018, 5(74): 197-198. doi: 10.3877/j.issn.2095-8242.2018.74.117

    XU K, FAN J T, ZHOU X H. Progress in primary osteoporosis-related gene research[J]. Electronic Journal of Clinical Medicine Literature, 2018, 5(74): 197-198. doi: 10.3877/j.issn.2095-8242.2018.74.117
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 网络出版日期:  2024-07-22

目录

    /

    返回文章
    返回