留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印钛合金椎间融合器联合含PRP同种异体骨在ACDF中的应用效果

王路 李贤海 刘宪翠 徐浩 张亮

王路, 李贤海, 刘宪翠, 徐浩, 张亮. 3D打印钛合金椎间融合器联合含PRP同种异体骨在ACDF中的应用效果[J]. 中华全科医学, 2024, 22(7): 1133-1137. doi: 10.16766/j.cnki.issn.1674-4152.003583
引用本文: 王路, 李贤海, 刘宪翠, 徐浩, 张亮. 3D打印钛合金椎间融合器联合含PRP同种异体骨在ACDF中的应用效果[J]. 中华全科医学, 2024, 22(7): 1133-1137. doi: 10.16766/j.cnki.issn.1674-4152.003583
WANG Lu, LI Xianhai, LIU Xiancui, XU Hao, ZHANG Liang. Effect of 3D printed titanium interbody fusion device combined with PRP-containing allograft bone in ACDF surgery[J]. Chinese Journal of General Practice, 2024, 22(7): 1133-1137. doi: 10.16766/j.cnki.issn.1674-4152.003583
Citation: WANG Lu, LI Xianhai, LIU Xiancui, XU Hao, ZHANG Liang. Effect of 3D printed titanium interbody fusion device combined with PRP-containing allograft bone in ACDF surgery[J]. Chinese Journal of General Practice, 2024, 22(7): 1133-1137. doi: 10.16766/j.cnki.issn.1674-4152.003583

3D打印钛合金椎间融合器联合含PRP同种异体骨在ACDF中的应用效果

doi: 10.16766/j.cnki.issn.1674-4152.003583
基金项目: 

浙江省中医药科技计划项目 2020ZB163

浙江省舟山科技局项目 2023C31009

详细信息
    通讯作者:

    王路,E-mail:13587096022@163.com

  • 中图分类号: R681.55 R687.4

Effect of 3D printed titanium interbody fusion device combined with PRP-containing allograft bone in ACDF surgery

  • 摘要:   目的  分析3D打印钛合金椎间融合器与富血小板血浆(PRP)处理的同种异体骨联合应用于颈前路椎间盘切除融合术(ACDF)的临床效果,以及其在促进脊柱稳定性和椎体融合中的潜在效益。  方法  选取2021年8月—2023年5月温州医科大学附属舟山医院收治的需行ACDF的颈椎病患者110例,其中56例采用3D打印钛合金椎间融合器加同种异体骨的患者为A组,54例采用3D打印钛合金椎间融合器联合含PRP同种异体骨的患者为B组。观察2组手术时间、术中出血量、术后引流量、日本骨科协会(JOA)评分、视觉模拟疼痛(VAS)评分,测量节段性前凸角(SA)、颈椎曲度指数(CCI)、椎间盘高度(IH)以及术后各时间点的融合率。  结果  2组手术时间、术中出血量比较差异均无统计学意义(P>0.05),B组术后引流量明显少于A组(P < 0.05);不同时间点VAS评分、JOA评分差异有统计学意义(P < 0.05);不同时间点SA、CCI、IH差异均有统计学意义(P < 0.05);颈椎正侧位X片显示,A、B组术后3个月影像学融合率分别为48.21%(27/56)、70.37%(38/54),术后6个月影像学融合率分别为73.21%(41/56)、92.59%(50/54),术后12个月融合率均为100.00%,B组术后3个月、6个月随访融合率明显高于A组(P < 0.05)。  结论  ACDF中采用3D打印钛合金椎间融合器联合含PRP同种异体骨具有术后引流量少的优点,还可以促进早期融合,提高融合手术成功率,有益于患者术后早期康复。

     

  • 图  1  3D打印钛合金椎间融合器联合同种异体骨植骨ACDF术X线片

    注:A为术前,B为术后3个月,C为术后6个月,D为术后12个月。

    Figure  1.  X-ray of ACDF with a 3D-printed titanium alloy interbody fusion cage combined with allograft bone graft

    图  2  3D打印钛合金椎间融合器联合含PRP同种异体骨植骨ACDF术X线片

    注:A为术前,B为术后3个月,C为术后6个月,D为术后12个月。

    Figure  2.  X-ray of a 3D-printed titanium alloy interbody fusion apparatus combined with PRP allogeneic bone grafting for ACDF

    表  1  2组颈椎病患者一般资料比较

    Table  1.   Comparison of general data between two groups of patients with cervical spondylosis

    组别 例数 性别
    (男/女, 例)
    年龄
    (x±s, 岁)
    BMI
    (x±s)
    诊断分型[例(%)] 病变节段[例(%)]
    神经根型 脊髓型 C3~4 C4~5 C5~6 C6~7
    A组 56 36/20 51.64±8.16 23.67±2.19 23(41.07) 33(58.93) 8(14.29) 18(32.14) 25(44.64) 5(8.93)
    B组 54 30/24 52.07±7.68 23.22±2.37 19(35.19) 35(64.81) 6(11.11) 15(27.78) 26(48.15) 7(12.96)
    统计量 0.873a 0.284b 1.035b 0.404a 0.875a
    P 0.350 0.777 0.303 0.525 0.831
    注:a为χ2值,bt值。
    下载: 导出CSV

    表  2  2组颈椎病患者手术时间、术中出血量、术后引流量比较(x±s)

    Table  2.   Comparison of operation time, intraoperative blood loss, and postoperative drainage volume between two groups of patients with cervical spondylosis (x±s)

    组别 例数 手术时间
    (min)
    术中出血量
    (mL)
    术后引流量
    (mL)
    A组 56 91.14±7.49 85.19±25.12 82.46±20.43
    B组 54 93.18±5.16 88.17±24.62 70.71±21.59
    t 1.658 0.628 2.933
    P 0.100 0.531 0.004
    下载: 导出CSV

    表  3  2组颈椎病患者各时间点VAS评分比较(x±s, 分)

    Table  3.   Comparison of VAS scores at different time points between two groups of patients with cervical spondylosis (x±s, points)

    组别 例数 术前 术后3个月 术后6个月 术后12个月
    A组 56 7.49±2.13 4.31±1.23 2.74±1.31 1.21±0.49
    B组 54 7.50±2.40 2.57±0.67 1.76±0.54 0.91±0.13
    F 0.103 101.632 17.247 16.959
    P 0.748 < 0.001 < 0.001 < 0.001
    下载: 导出CSV

    表  4  2组颈椎病患者各时间点JOA评分比较(x±s, 分)

    Table  4.   Comparison of JOA scores at each time points between two groups of patients with cervical spondylosis (x±s, points)

    组别 例数 术前 术后3个月 术后6个月 术后12个月
    A组 56 8.71±2.67 10.62±2.43 11.86±2.01 13.28±1.61
    B组 54 8.60±2.37 12.69±2.47 13.47±2.01 15.82±3.01
    F < 0.001 8.602 17.819 24.610
    P 0.994 0.004 < 0.001 < 0.001
    下载: 导出CSV

    表  5  2组颈椎病患者各时间点Cobb角比较(x±s)

    Table  5.   Comparison of Cobb angles at each time point between two groups of patients with cervical spondylosis (x±s)

    组别 例数 SA(°) CCI(°) IH(mm)
    术前 术后3个月 术后6个月 术后12个月 术前 术后3个月 术后6个月 术后12个月 术前 术后3个月 术后6个月 术后12个月
    A组 56 7.13±3.24 15.71±2.64 14.71±2.61 13.64±2.57 10.47±3.74 15.49±2.48 19.20±2.16 21.67±2.14 4.49±0.67 6.29±0.81 6.01±0.67 5.51±0.52
    B组 54 7.26±1.17 14.61±2.50 13.76±2.61 12.43±2.13 11.21±2.16 20.19±2.38 22.59±2.36 25.17±3.01 4.47±0.59 6.68±0.71 6.44±0.68 6.01±0.58
    F 0.613 5.217 2.829 14.772 2.131 189.589 86.698 57.997 0.022 7.459 10.446 23.790
    P 0.436 0.024 0.095 < 0.001 0.147 < 0.001 < 0.001 < 0.001 0.883 0.007 0.002 < 0.001
    下载: 导出CSV
  • [1] 吴昊, 于海洋, 翟云雷, 等. 椎间隙环Cage周围270°自体骨回植术对腰椎融合术后椎体融合率及疗效的影响[J]. 中华全科医学, 2021, 19(9): 1488-1491. doi: 10.16766/j.cnki.issn.1674-4152.002093

    WU H, YU H Y, ZHAI Y L, et al. Effect of 270åutogenous bone replantation around the intervertebral cage on vertebral fusion rate and efficacy after lumbar fusion[J]. Chinese Journal of General Practice, 2021, 19(9): 1488-1491. doi: 10.16766/j.cnki.issn.1674-4152.002093
    [2] ZHANG Y, DU S, AIYITI W, et al. Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages[J]. Biomed Mater Eng, 2024, 35(2): 99-124.
    [3] POWERS A Y, NIN D Z, CHEN Y W, et al. Anterior cervical discectomy and fusion with structural allograft is associated with lower postoperative health care utilization and reoperations compared with cage implants[J]. Oper Neurosurg(Hagerstown), 2024, 26(1): 16-21.
    [4] 万鑫, 徐春磊, 石巍, 等. 肌源性微粒及lactadherin蛋白与髋关节周围骨折患者高凝状态的相关研究[J]. 中华骨科杂志, 2022, 42(13): 839-846. doi: 10.3760/cma.j.cn121113-20220119-00033

    WAN X, XU C L, SHI W, et al. Correlation of muscle-derived microparticles and lactadherin proteins with hypercoagulability in patients with perihip fractures[J]. Chinese Journal of Orthopaedics, 2022, 42(13): 839-846. doi: 10.3760/cma.j.cn121113-20220119-00033
    [5] MCCARTHY M H, WEINER J A, PATEL A A. Strategies to achieve spinal fusion in multilevel anterior cervical spine surgery: an overview[J]. HSS J, 2020, 16(2): 155-161. doi: 10.1007/s11420-019-09738-3
    [6] MENG M, WANG J, HUANG H, et al. 3D printing metal implants in orthopedic surgery: methods, applications and future prospects[J]. J Orthop Translat, 2023, 42: 94-112. doi: 10.1016/j.jot.2023.08.004
    [7] LIU L W, WANG C S. The clinical effect of warm acupuncture and moxibustion combined with nerve mobilization in the treatment of cervical spondylotic radiculopathy, cervical mobility and its impact on VAS score[J]. PLA Med J, 2021, 33(2): 97-100.
    [8] AL SAIEGH F, PHILIPP L, HUGHES L P, et al. The impact of incorporating evidence-based guidelines for lumbar fusion surgery in neurosurgical resident education[J]. World Neurosurg, 2021, 154: e382-e388. doi: 10.1016/j.wneu.2021.07.045
    [9] Basic Research and Chemotherapy Group of the Spinal Cord Professional Committee of the Chinese Rehabilitation Medical Association. Basic Research and Chemotherapy Group of the Spinal Cord Professional Committee of the Chinese Rehabilitation Medical Association expert consensus on the application of bioactive materials in spinal fusion surgery[J]. Chinese Med J, 2022, 102(7): 479-485.
    [10] 郝定均, 杨俊松, 刘团江, 等. 从仿生学角度论下颈椎骨折脱位的治疗[J]. 中华创伤骨科杂志, 2022, 24(7): 553-557. doi: 10.3760/cma.j.cn115530-20220606-00306

    HAO D J, YANG J S, LIU T J, et al. On the treatment of subaxial cervical fracture and dislocation from the perspective of bionics[J]. Chinese Journal of Orthopaedic Trauma, 2022, 24(7): 553-557. doi: 10.3760/cma.j.cn115530-20220606-00306
    [11] LI S, HUAN Y, ZHU B, et al. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages[J]. J Mater Sci Mater Med, 2021, 33(1): 2.
    [12] ZHANG T, DUNSON J, KANWAL F, et al. Trends in outcomes for marginal allografts in liver transplant[J]. JAMA Surg, 2020, 155(10): 926-932. doi: 10.1001/jamasurg.2020.2484
    [13] LECKENBY J I, FURRER C, HAUG L, et al. A retrospective case series reporting the outcomes of avance nerve allografts in the treatment of peripheral nerve injuries[J]. Plast Reconstr Surg, 2020, 145(2): 368-381. doi: 10.1097/PRS.0000000000006485
    [14] EVERTS P, ONISHI K, JAYARAM P, et al. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020[J]. Int J Mol Sci, 2020, 21(20): 7794-7796. doi: 10.3390/ijms21207794
    [15] XU J, GOU L, ZHANG P, et al. Platelet-rich plasma and regenerative dentistry[J]. Aust Dent J, 2020, 65(2): 131-142. doi: 10.1111/adj.12754
    [16] KO T T, WU C L, CHANG H K, et al. Cervical disc arthroplasty for magnetic resonance-evident cervical spondylotic myelopathy: comparison with anterior cervical discectomy and fusion[J]. Neurosurg Focus, 2023, 55(3): E3. DOI: 10.3171/2023.6.FOCUS23291.
    [17] RAAD M, XU A L, ORTIZ-BABILONIA C, et al. A five-year cost-utility analysis comparing synthetic cage versus allograft use in anterior cervical discectomy and fusion surgery for cervical spondylotic myelopathy[J]. Spine, 2023, 48(5): 330-334.
    [18] WU S, QUAN K, MEI J, et al. Cortical allograft strut augmented with platelet-rich plasma for the treatment of long bone non-union in lower limb- a pilot study[J]. BMC Musculoskelet Disord, 2022, 23(1): 512. doi: 10.1186/s12891-022-05375-w
    [19] WU J, FENG Q, YANG D, et al. Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis[J]. BMC Musculoskelet Disord, 2023, 24(1): 85. DOI: 10.1186/s12891-023-06201-7.
    [20] ZHANG Y T, DU S, AIYITI W, et al. Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages[J]. Biomed Mater Eng, 2024, 35(2): 99-124.
    [21] BURNARD J L, PARR W C H, CHOY W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices[J]. Eur Spine J, 2020, 29(6): 1248-1260. doi: 10.1007/s00586-019-06236-2
    [22] MANICKAM P S, ROY S, SHETTY G M. Biomechanical evaluation of a novel S-type, dynamic zero-profile cage design for anterior cervical discectomy and fusion with variations in bone graft shape: a finite element analysis[J]. World Neurosurg, 2021, 154: e199-e214. doi: 10.1016/j.wneu.2021.07.013
    [23] VAN HORN M R, BEARD R, WANG W, et al. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model[J]. Spine J, 2021, 21(12): 2097-2103.
    [24] BURNARD J L, PARR W C H, CHOY W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices[J]. Eur Spine J, 2020, 29(6): 1248-1260.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 网络出版日期:  2024-09-05

目录

    /

    返回文章
    返回