A two-sample Mendelian randomization study of type 2 diabetes mellitus and colorectal cancer risk
-
摘要:
目的 本研究旨在通过两样本孟德尔随机化(MR)方法探讨2型糖尿病与结直肠癌之间的潜在因果关系。 方法 取自全基因组关联研究(GWAS)汇总数据集,其中暴露(2型糖尿病)数据490 089例,结局(结直肠癌)数据383 348例。通过剔除连锁不平衡和混杂因素,以及设定关联强度阈值,筛选出47个单核苷酸多态性(SNPs)作为研究的工具变量(IVs)。采用逆方差加权(IVW)法辅以加权中位数法、MR-Egger法、简单模式法和加权模式法评估因果关系。利用留一法进行敏感性分析,并通过可视化手段进一步评估MR分析结果的可靠性和稳健性。同时,使用IVW法和MR-Egger法的Cochran Q检验评估异质性,以及MR-Egger截距法进行多效性检验。 结果 IVW法表明两者间不存在显著的因果关联(OR=1.000,95% CI:0.999~1.001,P=0.790),加权中位数法(P=0.386)、MR-Egger法(P=0.137)、简单模式法(P=0.275)和加权模式法(P=0.479)的分析结果进一步验证了这一发现。留一法分析未发现显著影响整体结果的单个SNP,异质性检验(P>0.05)和多效性检验(P>0.05)的结果均佐证了MR结论的可靠性和稳健性。 结论 2型糖尿病与结直肠癌之间在遗传学层面不存在明显的因果关联。 Abstract:Objective This study aims to explore the potential causal relationship between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) using a two-sample Mendelian randomization (MR) method. Methods Summary data were obtained from genome-wide association studies (GWAS) datasets, including 490 089 cases for the exposure (T2DM) and 383 348 cases for the outcome (CRC). To minimize linkage disequilibrium and confounding factors, and to ensure strong association, 47 single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) for the study. The inverse variance weighted (IVW) method was used as the primary analysis, with supplementary analysis by the weighted median method, MR-Egger method, simple mode method, and weighted mode method to assess the causal relationship. Sensitivity analysis was conducted using the leave-one-out method, and visual tools were employed to further evaluate the reliability and robustness of the MR results. Heterogeneity was assessed using Cochran ' s Q test for both the IVW method and MR-Egger method, while pleiotropy was evaluated using the MR-Egger intercept method. Results The IVW method indicated no significant causal relationship between T2DM and CRC (OR=1.000, 95% CI: 0.999-1.001, P=0.790). These results were consistent across the weighted median method (P=0.386), MR-Egger method (P=0.137), simple mode method (P=0.275), and weighted mode method (P=0.479). The leave-one-out analysis did not identify any individual SNPs that significantly influenced the overall results. Both heterogeneity tests (P>0.05) and pleiotropy tests (P>0.05) supported the reliability and robustness of the MR conclusions. Conclusion There is no evident genetic causal relationship between T2DM and colorectal cancer. -
表 1 与2型糖尿病/结直肠癌相关的部分SNPs
Table 1. SNPs associated with type 2 diabetes / colorectal cancer
SNP chr EA(效应位点) OA(其他位点) β EAF SE F值 P值 rs10173251 2 G C -0.106 0.112 0.014 56.730 5.86×10-14 rs10830963 11 G C 0.050 0.330 0.007 60.122 1.20×10-14 rs10965250 9 A G -0.164 0.236 0.007 507.175 7.70×10-114 rs11257655 10 T C 0.108 0.282 0.007 246.809 2.36×10-55 rs1128249 2 T G -0.079 0.300 0.008 101.544 9.30×10-24 rs115018313 6 C T 0.284 0.031 0.024 142.391 7.30×10-33 rs11514706 7 C A 0.060 0.501 0.006 91.006 8.55×10-22 rs11651052 17 G A -0.091 0.590 0.007 196.000 5.35×10-44 rs12108088 3 A G -0.037 0.439 0.007 31.533 2.21×10-8 rs1215468 13 G A -0.075 0.288 0.007 117.833 3.91×10-27 -
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660 [2] FENG R M, SU Q L, HUANG X Y, et al. Cancer situation in China: what does the China cancer map indicate from the first national death survey to the latest cancer registration?[J]. Cancer Commun, 2023, 43(1): 75-86. doi: 10.1002/cac2.12393 [3] PIGEYRE M, GERSTEIN H, AHLQVIST E, et al. Identifying blood biomarkers for type 2 diabetes subtyping: a report from the origin trial[J]. Diabetologia, 2023, 66(6): 1045-1051. doi: 10.1007/s00125-023-05887-7 [4] 刘瑜婷, 石敏, 陈燕娜, 等. 血清C1q/肿瘤坏死因子相关蛋白9水平与妊娠期糖尿病及其胰岛素抵抗的关系[J]. 中华全科医学, 2024, 22(2): 195-197, 229. doi: 10.16766/j.cnki.issn.1674-4152.003363LIU Y T, SHI M, CHEN Y N, et al. Serum levels of C1q/TNF-related protein 9 and its association with insulin resistance in gestational diabetes mellitus[J]. Chinese Journal of General Practice, 2024, 22(2): 195-197, 229. doi: 10.16766/j.cnki.issn.1674-4152.003363 [5] LIU X Q, LI D C, GAO W X, et al. Identification of the shared gene signature and biological mechanism between type 2 diabetes and colorectal cancer[J]. Front Genet, 2023;14: 1202849. DOI: 10.3389/fgene.2023.1202849. [6] LI P S, WANG H Y, GUO L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study[J]. BMC Med, 2022, 20(1): 443. DOI: 10.1186/s12916-022-02657-x. [7] BIRNEY E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. DOI: 10.1101/cshperspect.a041302. [8] MUKAMAL K J, STAMPFER M J, RIMM E B. Genetic instrumental variable analysis: time to call mendelian randomization what it is. The example of alcohol and cardiovascular disease[J]. Eur J Epidemiol, 2020, 35(2): 93-97. doi: 10.1007/s10654-019-00578-3 [9] XUE H R, WU C, PAN W. Leveraging existing GWAS summary data of genetically correlated and uncorrelated traits to improve power for a new GWAS[J]. Genet Epidemiol, 2020, 44(7): 717-732. doi: 10.1002/gepi.22333 [10] CARTER A R, SANDERSON E, HAMMERTON G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021, 36(5): 465-478. doi: 10.1007/s10654-021-00757-1 [11] CHEN X, KONG J Q, DIAO X Y, et al. Depression and prostate cancer risk: a Mendelian randomization study[J]. Cancer Med, 2020, 9(23): 9160-9167. doi: 10.1002/cam4.3493 [12] YANG Y, XIAN W, WU D D, et al. The role of obesity, type 2 diabetes, and metabolic factors in gout: a Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2022, 13: 917056. DOI: 10.3389/fendo.2022.917056. [13] 陈继鑫, 周沁心, 郭天赐, 等. 白细胞介素-1受体拮抗剂与骨关节炎及亚型的孟德尔随机化研究[J]. 医学研究杂志, 2024, 53(4): 46-51.CHEN J X, ZHOU Q X, GUO T C, et al. Mendelian Randomization Study of Interleukin-1 Receptor Antagonists and Osteoarthritis and Subtypes[J]. Journal of Medical Research, 2024, 53(4): 46-51. [14] LUO G, YAO Y Y, TAO J C, et al. Causal association of sleep disturbances and low back pain: a bidirectional two-sample Mendelian randomization study[J]. Front Neurosci, 2022, 16: 1074605. DOI: 10.3389/fnins.2022.1074605. [15] LIN Z T, PAN I, PAN W. A practical problem with Egger regression in Mendelian randomization[J]. PLoS Genet, 2022, 18(5): e1010166. DOI: 10.1371/journal.pgen.1010166. [16] XU J W, ZHANG S Y, TIAN Y, et al. Genetic causal association between iron status and osteoarthritis: a two-sample Mendelian randomization[J]. Nutrients, 2022, 14(18): 3683-3696. doi: 10.3390/nu14183683 [17] GOTO A, YAMAJI T, SAWADA N, et al. Diabetes and cancer risk: a Mendelian randomization study[J]. Int J Cancer, 2020, 146(3): 712-719. doi: 10.1002/ijc.32310 [18] YUAN S, KAR S, CARTER P, et al. Is Type 2 diabetes causally associated with cancer risk? Evidence from a two-sample Mendelian randomization study[J]. Diabetes, 2020, 69(7): 1588-1596. doi: 10.2337/db20-0084 [19] MURPHY N, SONG M Y, PAPADIMITRIOU N, et al. Associations between glycemic traits and colorectal cancer: a Mendelian randomization analysis[J]. J Natl Cancer Inst, 2022, 114(5): 740-752. doi: 10.1093/jnci/djac011 [20] MAO X H, TAN J T, MAK L Y, et al. Optimal glycaemic control and the reduced risk of colorectal adenoma and cancer in patients with diabetes: a population-based cohort study[J]. Gut, 2024. DOI: 10.1136/gutjnl-2023-331701. [21] MAGHLAPERIDZE Z, KAPETIVADZE V, TABUKASHVILI R, et al. The role of insulin-like growth factor-1 and insulin in development of colorectal cancer[J]. Georgian Med News, 2021(315): 26-29. [22] CHEN H D, LIU L, LU M, et al. Implications of lifestyle factors and polygenic risk score for absolute risk prediction of colorectal neoplasm and risk-adapted screening[J]. Front Mol Biosci, 2021, 8: 685410. DOI: 10.3389/fmolb.2021.685410.