MiR-375 Modulates HK2 via SP1 to Impact Proliferation and Glycolysis in Hepatocellular Carcinoma
-
摘要:
目的 探讨肝癌中己糖激酶2(HK2)异常表达以及肝癌细胞增殖和糖酵解的调控机制。 方法 收集2017年1月—2019年12月41例在武汉市中心医院手术切除的肝癌及癌旁组织病理样本。利用免疫组化法(IHC)评估HK2和特异性蛋白1(SP1)的表达。在肝癌细胞系HepG2中敲低HK2和SP1、过表达miR-375,使用CCK-8、葡萄糖、乳酸浓度测定检测细胞增殖和糖酵解能力,利用实时荧光定量PCR和Western blotting实验验证三者之间的调控关系。利用基因表达数据库(GEO)中的肝癌数据集分析三者之间的相关性。应用荧光素酶报告基因实验验证miR-375和SP1之间的直接相互作用。 结果 IHC显示,SP1和HK2在癌旁组织中的高表达比例分别为39.0%(16/41)和26.8%(11/41),而在肝癌组织中则升至58.5%(24/41)和53.7%(22/41)。SP1和HK2的表达评分呈正相关关系(r=0.611,P < 0.001)。下调HK2和SP1以及上调miR-375表达抑制肝癌细胞的增殖和糖酵解能力,而上调miR-375和下调SP1抑制HK2的表达。生物信息学分析显示, HK2表达与miR-375呈负相关关系(r=-0.584, P < 0.001), 与SP1呈正相关关系(r=0.297, P=0.005)。miR-375可直接靶向抑制SP1在mRNA和蛋白质的表达。荧光素酶报告基因证实miR-375与SP1存在直接相互作用。 结论 miR-375通过靶向SP1调控HK2影响肝癌的增殖和糖酵解。 Abstract:Objective To investigate the aberrant expression of hexokinase 2 (HK2) in hepatocellular carcinoma (HCC) and the regulatory mechanisms of cell proliferation and glycolysis in HCC. Methods A total of 41 cases of HCC and paracancerous tissues that underwent surgical resection at the Central Hospital of Wuhan between January 2017 and December 2019 were collected for pathological examination. The expression of HK2 and SP1 was evaluated through immunohistochemical staining. In the HepG2 cell line, HK2 and SP1 were knocked down, and miR-375 was overexpressed. The assessment of cell proliferation and glycolytic capacity was conducted through the utilization of CCK-8, glucose, and lactate concentration assays. The regulatory relationships among HK2, SP1, and miR-375 were validated through the implementation of real-time quantitative PCR (RT-qPCR) and Western blotting techniques. The correlation among these factors was analyzed through the utilization of the gene expression omnibus (GEO) HCC dataset. The direct interaction between miR-375 and SP1 was confirmed through the utilization of a luciferase reporter assay. Results IHC revealed that the high expression rates of SP1 and HK2 in paracancerous tissues were 39.0% (16/41) and 26.8% (11/41), respectively. In HCC tissues, these rates increased to 58.5% (24/41) and 53.7% (22/41) respectively. A positive correlation was observed between SP1 and HK2 expression scores (r=0.611, P < 0.001). The downregulation of HK2 and SP1, and the upregulation of miR-375, resulted in the inhibition of HCC cell proliferation and glycolysis. The upregulation of miR-375 and downregulation of SP1 resulted in the suppression of HK2 expression. Bioinformatics analysis revealed a negative correlation between HK2 and miR-375 expression (r=-0.584, P < 0.001) and a positive correlation between HK2 and SP1 expression (r=0.297, P=0.005). Additionally, miR-375 was identified as a direct target of SP1, exhibiting inhibitory effects at both mRNA and protein levels. The luciferase reporter assay provided confirmation of the direct interaction between miR-375 and SP1. Conclusion The miR-375 has been demonstrated to regulate HK2 by targeting the transcription factor SP1, thereby influencing the proliferation and glycolysis of HCC. -
Key words:
- Hepatocellular carcinoma /
- MicroRNA /
- MiR-375 /
- Specificity protein 1 /
- Hexokinase2 /
- Glycolysis /
- Cell proliferation
-
图 2 miR-375、SP1和HK2对肝癌细胞的增殖和糖酵解的影响
注:HepG2细胞转染miR-375类似物(375 mimic)、3种不同序列的SP1和HK2 siRNA及阴性对照(NC)。A为用TaqMan-PCR定量成熟miR-375,用Western blotting检测SP1、HK2的表达;B为细胞增殖情况;C为细胞培养基中乳酸产量情况;D为细胞培养基中葡萄糖消耗量情况; aP < 0.05。
Figure 2. miR-375, SP1 and HK2 affect proliferation and glycolysis in hepatocellular carcinoma cells
表 1 人工合成寡核苷酸序列
Table 1. Synthetic oligonucleotide sequences
基因 序列 miR-375 mimic 5’-UUUGUUCGUUCGGCUCGCGUGA-3’ 3’-AAACAAGCAAGCCGAGCGCACU-5’ miR-375 NC 5’-UUUGUACUACACAAAAGUACUG-3’ 3’-AAACAUGAUGUGUUUUCAUGAC-5’ HK2_siRNA1 CTGTGAAGTTGGCCTCATT HK2_siRNA2 ACGACAGCATCATTGTTAA HK2_siRNA3 CTGGCTAACTTCATGGATA SP1_siRNA1 GCAACATCATTGCTGCTAT SP1_siRNA2 GCCAATAGCTACTCAACTA SP1_siRNA3 CTCCCAACTTACAGAACCA sp1-wt-3’UTR 5’-CCGACTAGTGAAGCACATGATCATGGGAATGATAGCCCAGAACAA AAAGAAATCTTGAAGCTTGGG-3’ 3’-GGCTGATCACTTCGTGTACTAGTACCCTTACTATCGGGTCTTGTTTT TCTTTAGAACTTCGAACCC-5’ sp1-mut-3’UTR 5’-CCGACTAGTGAAGCACATGATCATGGGAATGATTCGGCAGTTGTTT AAGAAATCTTGAAGCTTGGG-3’ 3’-GGCTGATCACTTCGTGTACTAGTACCCTTACTAAGCCGTCAACAAA TTCTTTAGAACTTCGAACCC-5’ 表 2 不同HK2表达情况肝癌患者临床特征比较(例)
Table 2. Comparison of clinicopathologic characteristics of hepatocellular carcinoma patients with different expression levels of HK2(cases)
项目 低表达(n=19) 高表达(n=22) P值 项目 低表达(n=19) 高表达(n=22) P值 年龄 ≤50岁 10 12 0.902 饮酒史 >50岁 9 10 是 7 10 0.577 性别 否 12 12 男性 17 22 0.209 HBV感染 女性 2 0 是 16 22 0.053 家族史 否 3 0 是 3 4 0.999 HBV-DNA阳性 否 16 18 是 4 6 0.922 甲胎蛋白水平 否 15 16 ≤20 ng/mL 9 5 0.097 肝硬化 >20 ng/mL 10 17 是 6 9 0.536 肿瘤大小 否 13 13 ≤5 cm 2 1 0.895 门脉癌栓 >5 cm 17 21 是 0 1 0.999 分化程度 否 19 21 高分化 5 0 0.010 中低分化 14 22 注:比较均采用Fisher精确检验。 -
[1] VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. doi: 10.1016/S0140-6736(22)01200-4 [2] 刘威, 张逸寅, 赵芳, 等. PD-1抑制剂联合抗血管生成药物治疗晚期肝细胞癌的疗效及预后影响因素分析[J]. 中华全科医学, 2024, 22(1): 64-69. doi: 10.16766/j.cnki.issn.1674-4152.003332LIU W, ZHANG YY, ZHAO F, et al. Analysis of the efficacy and prognostic factors influencing the treatment of advanced hepatocellular carcinoma with PD-1 inhibitors combined with antiangiogenic drugs[J]. Chinese Journal of General Practice, 2024, 22(1): 64-69. doi: 10.16766/j.cnki.issn.1674-4152.003332 [3] 曾珠, 廖正银. 晚期肝细胞肝癌治疗中免疫检查点抑制剂的应用[J]. 华西医学, 2020, 35(2): 230-235.ZENG Z, LIAO Z Y. Application of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma[J]. West China Medicine, 2020, 35(2): 230-235. [4] DU D, LIU C, QIN M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12(2): 558-580. doi: 10.1016/j.apsb.2021.09.019 [5] 耿西林, 张颖, 李浩, 等. 线粒体动力相关蛋白DRP1对肝癌细胞糖代谢的调控作用研究[J]. 中华全科医学, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270GENG X L, ZHANG Y, LI H, et al. Regulation of glucose metabolism in hepatocellular carcinoma cells by mitochondrial power-related protein DRP1[J]. Chinese Journal of General Practice, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270 [6] ALVES A P, MAMEDE A C, ALVES M G, et al. Glycolysis inhibition as a strategy for hepatocellular carcinoma treatment?[J]. Curr Cancer Drug Targets, 2019, 19(1): 26-40. [7] DEWAAL D, NOGUEIRA V, TERRY A R, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1): 446. doi: 10.1038/s41467-017-02733-4 [8] FENG J, LI J, WU L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 126. doi: 10.1186/s13046-020-01629-4 [9] GARCIA S N, GUEDES R C, MARQUES M M. Unlocking the potential of HK2 in cancer metabolism and therapeutics[J]. Curr Med Chem, 2019, 26(41): 7285-7322. [10] CISCATO F, FERRONE L, MASGRAS I, et al. Hexokinase 2 in cancer: a prima donna playing multiple characters[J]. Int J Mol Sci, 2021, 22(9): 4716. DOI: 10.3390/ijms22094716. [11] DU D, LIU C, QIN M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharmaceutica Sinica B, 2022, 12(2): 558-580. doi: 10.1016/j.apsb.2021.09.019 [12] WATZKY M, HUARD S, JURICEK L, et al. Hexokinase 2 is a transcriptional target and a positive modulator of AHR signalling[J]. Nucleic Acids Res, 2022, 50(10): 5545-5564. doi: 10.1093/nar/gkac360 [13] DOU C, MO H, CHEN T, et al. ZMYND8 promotes the growth and metastasis of hepatocellular carcinoma by promoting HK2-mediated glycolysis[J]. Pathol Res Pract, 2021, 219: 153345. DOI: 10.1016/j.prp.2021.153345. [14] JIN F, WANG Y, ZHU Y, et al. The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma[J]. Sci Rep, 2017, 7(1): 3089. doi: 10.1038/s41598-017-03407-3 [15] XU F, YAN J J, GAN Y, et al. miR-885-5p negatively regulates warburg effect by silencing hexokinase 2 in liver cancer[J]. Mol Ther Nucleic Acids, 2019, 18: 308-319. doi: 10.1016/j.omtn.2019.09.002 [16] WANG J, CHEN J, SUN F, et al. miR-202 functions as a tumor suppressor in hepatocellular carcinoma by targeting HK2[J]. Oncol Lett, 2020, 19(3): 2265-2271. [17] GUO W, QIU Z, WANG Z, et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer[J]. Hepatology (Baltimore, Md), 2015, 62(4): 1132-1144. doi: 10.1002/hep.27929 [18] 王迪迪, 黄玉荣, 王建君, 等. miR-148b-3p通过调节脂代谢基因对肝癌细胞恶性生物学行为的影响[J]. 贵州医科大学学报, 2023, 48(10): 1129-1136, 1144.WANG D D, HUANG Y R, WANG J J, et al. Effect of miR-148b-3p on the malignant biological behaviors of hepatocellular carcinoma cells by regulating lipid metabolism genes[J]. Journal of Guizhou Medical University, 2023, 48(10): 1129-1136, 1144. [19] SAFE S. Specificity proteins (Sp) and cancer[J]. Int J Mol Sci, 2023, 24(6): 5164. DOI: 10.3390/ijms24065164. [20] WEI J, LU Y, WANG R, et al. MicroRNA-375: potential cancer suppressor and therapeutic drug[J]. Biosci Rep, 2021, 41(9): BSR20211494. DOI: 10.1042/BSR20211494.