留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-375靶向SP1通过HK2调控肝癌细胞增殖和糖酵解的作用机制研究

颜俊伟 周磊 陈珊珊 张姮

颜俊伟, 周磊, 陈珊珊, 张姮. miR-375靶向SP1通过HK2调控肝癌细胞增殖和糖酵解的作用机制研究[J]. 中华全科医学, 2024, 22(10): 1665-1670. doi: 10.16766/j.cnki.issn.1674-4152.003707
引用本文: 颜俊伟, 周磊, 陈珊珊, 张姮. miR-375靶向SP1通过HK2调控肝癌细胞增殖和糖酵解的作用机制研究[J]. 中华全科医学, 2024, 22(10): 1665-1670. doi: 10.16766/j.cnki.issn.1674-4152.003707
YAN Junwei, ZHOU Lei, CHEN Shanshan, ZHANG Heng. MiR-375 Modulates HK2 via SP1 to Impact Proliferation and Glycolysis in Hepatocellular Carcinoma[J]. Chinese Journal of General Practice, 2024, 22(10): 1665-1670. doi: 10.16766/j.cnki.issn.1674-4152.003707
Citation: YAN Junwei, ZHOU Lei, CHEN Shanshan, ZHANG Heng. MiR-375 Modulates HK2 via SP1 to Impact Proliferation and Glycolysis in Hepatocellular Carcinoma[J]. Chinese Journal of General Practice, 2024, 22(10): 1665-1670. doi: 10.16766/j.cnki.issn.1674-4152.003707

miR-375靶向SP1通过HK2调控肝癌细胞增殖和糖酵解的作用机制研究

doi: 10.16766/j.cnki.issn.1674-4152.003707
基金项目: 

湖北省自然科学基金项目 2023AFB458

武汉市卫生健康委员会医学科研项目 WX21Q45

详细信息
    通讯作者:

    张姮,E-mail:653262549@qq.com

  • 中图分类号: R735.7

MiR-375 Modulates HK2 via SP1 to Impact Proliferation and Glycolysis in Hepatocellular Carcinoma

  • 摘要:   目的   探讨肝癌中己糖激酶2(HK2)异常表达以及肝癌细胞增殖和糖酵解的调控机制。   方法   收集2017年1月—2019年12月41例在武汉市中心医院手术切除的肝癌及癌旁组织病理样本。利用免疫组化法(IHC)评估HK2和特异性蛋白1(SP1)的表达。在肝癌细胞系HepG2中敲低HK2和SP1、过表达miR-375,使用CCK-8、葡萄糖、乳酸浓度测定检测细胞增殖和糖酵解能力,利用实时荧光定量PCR和Western blotting实验验证三者之间的调控关系。利用基因表达数据库(GEO)中的肝癌数据集分析三者之间的相关性。应用荧光素酶报告基因实验验证miR-375和SP1之间的直接相互作用。  结果  IHC显示,SP1和HK2在癌旁组织中的高表达比例分别为39.0%(16/41)和26.8%(11/41),而在肝癌组织中则升至58.5%(24/41)和53.7%(22/41)。SP1和HK2的表达评分呈正相关关系(r=0.611,P < 0.001)。下调HK2和SP1以及上调miR-375表达抑制肝癌细胞的增殖和糖酵解能力,而上调miR-375和下调SP1抑制HK2的表达。生物信息学分析显示, HK2表达与miR-375呈负相关关系(r=-0.584, P < 0.001), 与SP1呈正相关关系(r=0.297, P=0.005)。miR-375可直接靶向抑制SP1在mRNA和蛋白质的表达。荧光素酶报告基因证实miR-375与SP1存在直接相互作用。   结论   miR-375通过靶向SP1调控HK2影响肝癌的增殖和糖酵解。

     

  • 图  1  肝癌和癌旁组织中HK2和SP1的表达情况(免疫组化法,×200)

    注:肝癌中HK2和SP1表达上调。

    Figure  1.  HK2 and SP1 expression in hepatocellular carcinoma (immunocytochemistry, ×200)

    图  2  miR-375、SP1和HK2对肝癌细胞的增殖和糖酵解的影响

    注:HepG2细胞转染miR-375类似物(375 mimic)、3种不同序列的SP1和HK2 siRNA及阴性对照(NC)。A为用TaqMan-PCR定量成熟miR-375,用Western blotting检测SP1、HK2的表达;B为细胞增殖情况;C为细胞培养基中乳酸产量情况;D为细胞培养基中葡萄糖消耗量情况; aP < 0.05。

    Figure  2.  miR-375, SP1 and HK2 affect proliferation and glycolysis in hepatocellular carcinoma cells

    图  3  miR-375和SP1对HK2表达的影响

    注:A为HepG2细胞转染miR-375类似物和阴性对照(NC),qRT-PCR和Western blotting检测HK2 mRNA水平和蛋白水平。B为转染SP1 siRNA-3(表现出更好的干扰效果)和对照,用qRT-PCR和Western blotting检测HK2 mRNA水平和蛋白水平。

    Figure  3.  The effects of miR-375 and SP1 on HK2 expression

    图  4  miR-375在肝癌细胞中的荧光素酶报告基因实验

    注:A为转染miR-375类似物和阴性对照(NC)后,检测SP1 mRNA和蛋白水平。B为荧光素酶报告基因构建图,野生型(sp1-wt)或突变型(sp1-mut), 突变位点用红色标记。C为共转染sp1-wt或sp1-mut和375类似物或NC后,检测相对荧光素酶活性。

    Figure  4.  Luciferase reporter assay of miR-375 in hepatocellular carcinoma

    表  1  人工合成寡核苷酸序列

    Table  1.   Synthetic oligonucleotide sequences

    基因 序列
    miR-375 mimic 5’-UUUGUUCGUUCGGCUCGCGUGA-3’
    3’-AAACAAGCAAGCCGAGCGCACU-5’
    miR-375 NC 5’-UUUGUACUACACAAAAGUACUG-3’
    3’-AAACAUGAUGUGUUUUCAUGAC-5’
    HK2_siRNA1 CTGTGAAGTTGGCCTCATT
    HK2_siRNA2 ACGACAGCATCATTGTTAA
    HK2_siRNA3 CTGGCTAACTTCATGGATA
    SP1_siRNA1 GCAACATCATTGCTGCTAT
    SP1_siRNA2 GCCAATAGCTACTCAACTA
    SP1_siRNA3 CTCCCAACTTACAGAACCA
    sp1-wt-3’UTR 5’-CCGACTAGTGAAGCACATGATCATGGGAATGATAGCCCAGAACAA AAAGAAATCTTGAAGCTTGGG-3’
    3’-GGCTGATCACTTCGTGTACTAGTACCCTTACTATCGGGTCTTGTTTT TCTTTAGAACTTCGAACCC-5’
    sp1-mut-3’UTR 5’-CCGACTAGTGAAGCACATGATCATGGGAATGATTCGGCAGTTGTTT AAGAAATCTTGAAGCTTGGG-3’
    3’-GGCTGATCACTTCGTGTACTAGTACCCTTACTAAGCCGTCAACAAA TTCTTTAGAACTTCGAACCC-5’
    下载: 导出CSV

    表  2  不同HK2表达情况肝癌患者临床特征比较(例)

    Table  2.   Comparison of clinicopathologic characteristics of hepatocellular carcinoma patients with different expression levels of HK2(cases)

    项目 低表达(n=19) 高表达(n=22) P 项目 低表达(n=19) 高表达(n=22) P
    年龄
    ≤50岁 10 12 0.902 饮酒史
    >50岁 9 10 7 10 0.577
    性别 12 12
    男性 17 22 0.209 HBV感染
    女性 2 0 16 22 0.053
    家族史 3 0
    3 4 0.999 HBV-DNA阳性
    16 18 4 6 0.922
    甲胎蛋白水平 15 16
    ≤20 ng/mL 9 5 0.097 肝硬化
    >20 ng/mL 10 17 6 9 0.536
    肿瘤大小 13 13
    ≤5 cm 2 1 0.895 门脉癌栓
    >5 cm 17 21 0 1 0.999
    分化程度 19 21
    高分化 5 0 0.010
    中低分化 14 22
    注:比较均采用Fisher精确检验。
    下载: 导出CSV
  • [1] VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. doi: 10.1016/S0140-6736(22)01200-4
    [2] 刘威, 张逸寅, 赵芳, 等. PD-1抑制剂联合抗血管生成药物治疗晚期肝细胞癌的疗效及预后影响因素分析[J]. 中华全科医学, 2024, 22(1): 64-69. doi: 10.16766/j.cnki.issn.1674-4152.003332

    LIU W, ZHANG YY, ZHAO F, et al. Analysis of the efficacy and prognostic factors influencing the treatment of advanced hepatocellular carcinoma with PD-1 inhibitors combined with antiangiogenic drugs[J]. Chinese Journal of General Practice, 2024, 22(1): 64-69. doi: 10.16766/j.cnki.issn.1674-4152.003332
    [3] 曾珠, 廖正银. 晚期肝细胞肝癌治疗中免疫检查点抑制剂的应用[J]. 华西医学, 2020, 35(2): 230-235.

    ZENG Z, LIAO Z Y. Application of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma[J]. West China Medicine, 2020, 35(2): 230-235.
    [4] DU D, LIU C, QIN M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12(2): 558-580. doi: 10.1016/j.apsb.2021.09.019
    [5] 耿西林, 张颖, 李浩, 等. 线粒体动力相关蛋白DRP1对肝癌细胞糖代谢的调控作用研究[J]. 中华全科医学, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270

    GENG X L, ZHANG Y, LI H, et al. Regulation of glucose metabolism in hepatocellular carcinoma cells by mitochondrial power-related protein DRP1[J]. Chinese Journal of General Practice, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270
    [6] ALVES A P, MAMEDE A C, ALVES M G, et al. Glycolysis inhibition as a strategy for hepatocellular carcinoma treatment?[J]. Curr Cancer Drug Targets, 2019, 19(1): 26-40.
    [7] DEWAAL D, NOGUEIRA V, TERRY A R, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1): 446. doi: 10.1038/s41467-017-02733-4
    [8] FENG J, LI J, WU L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 126. doi: 10.1186/s13046-020-01629-4
    [9] GARCIA S N, GUEDES R C, MARQUES M M. Unlocking the potential of HK2 in cancer metabolism and therapeutics[J]. Curr Med Chem, 2019, 26(41): 7285-7322.
    [10] CISCATO F, FERRONE L, MASGRAS I, et al. Hexokinase 2 in cancer: a prima donna playing multiple characters[J]. Int J Mol Sci, 2021, 22(9): 4716. DOI: 10.3390/ijms22094716.
    [11] DU D, LIU C, QIN M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharmaceutica Sinica B, 2022, 12(2): 558-580. doi: 10.1016/j.apsb.2021.09.019
    [12] WATZKY M, HUARD S, JURICEK L, et al. Hexokinase 2 is a transcriptional target and a positive modulator of AHR signalling[J]. Nucleic Acids Res, 2022, 50(10): 5545-5564. doi: 10.1093/nar/gkac360
    [13] DOU C, MO H, CHEN T, et al. ZMYND8 promotes the growth and metastasis of hepatocellular carcinoma by promoting HK2-mediated glycolysis[J]. Pathol Res Pract, 2021, 219: 153345. DOI: 10.1016/j.prp.2021.153345.
    [14] JIN F, WANG Y, ZHU Y, et al. The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma[J]. Sci Rep, 2017, 7(1): 3089. doi: 10.1038/s41598-017-03407-3
    [15] XU F, YAN J J, GAN Y, et al. miR-885-5p negatively regulates warburg effect by silencing hexokinase 2 in liver cancer[J]. Mol Ther Nucleic Acids, 2019, 18: 308-319. doi: 10.1016/j.omtn.2019.09.002
    [16] WANG J, CHEN J, SUN F, et al. miR-202 functions as a tumor suppressor in hepatocellular carcinoma by targeting HK2[J]. Oncol Lett, 2020, 19(3): 2265-2271.
    [17] GUO W, QIU Z, WANG Z, et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer[J]. Hepatology (Baltimore, Md), 2015, 62(4): 1132-1144. doi: 10.1002/hep.27929
    [18] 王迪迪, 黄玉荣, 王建君, 等. miR-148b-3p通过调节脂代谢基因对肝癌细胞恶性生物学行为的影响[J]. 贵州医科大学学报, 2023, 48(10): 1129-1136, 1144.

    WANG D D, HUANG Y R, WANG J J, et al. Effect of miR-148b-3p on the malignant biological behaviors of hepatocellular carcinoma cells by regulating lipid metabolism genes[J]. Journal of Guizhou Medical University, 2023, 48(10): 1129-1136, 1144.
    [19] SAFE S. Specificity proteins (Sp) and cancer[J]. Int J Mol Sci, 2023, 24(6): 5164. DOI: 10.3390/ijms24065164.
    [20] WEI J, LU Y, WANG R, et al. MicroRNA-375: potential cancer suppressor and therapeutic drug[J]. Biosci Rep, 2021, 41(9): BSR20211494. DOI: 10.1042/BSR20211494.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-22

目录

    /

    返回文章
    返回