留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的肺腺癌细胞焦亡预后模型构建与验证

陈少明 胡艳 洪旭东 郑伟 胡旭钢

陈少明, 胡艳, 洪旭东, 郑伟, 胡旭钢. 基于机器学习的肺腺癌细胞焦亡预后模型构建与验证[J]. 中华全科医学, 2025, 23(1): 21-25. doi: 10.16766/j.cnki.issn.1674-4152.003827
引用本文: 陈少明, 胡艳, 洪旭东, 郑伟, 胡旭钢. 基于机器学习的肺腺癌细胞焦亡预后模型构建与验证[J]. 中华全科医学, 2025, 23(1): 21-25. doi: 10.16766/j.cnki.issn.1674-4152.003827
CHEN Shaoming, HU Yan, HONG Xudong, ZHENG Wei, HU Xugang. Construction and validation for a prognostic model of pyroptosis from lung adenocarcinoma based on machine learning[J]. Chinese Journal of General Practice, 2025, 23(1): 21-25. doi: 10.16766/j.cnki.issn.1674-4152.003827
Citation: CHEN Shaoming, HU Yan, HONG Xudong, ZHENG Wei, HU Xugang. Construction and validation for a prognostic model of pyroptosis from lung adenocarcinoma based on machine learning[J]. Chinese Journal of General Practice, 2025, 23(1): 21-25. doi: 10.16766/j.cnki.issn.1674-4152.003827

基于机器学习的肺腺癌细胞焦亡预后模型构建与验证

doi: 10.16766/j.cnki.issn.1674-4152.003827
基金项目: 

浙江省医药卫生科技计划项目 2021KY946

浙江省教育厅一般科研项目 Y202456549

杭州市医药卫生科技计划项目 B20252302

详细信息
    通讯作者:

    胡旭钢,E-mail: xiaoganpao@163.com

  • 中图分类号: R734.2 R730.7

Construction and validation for a prognostic model of pyroptosis from lung adenocarcinoma based on machine learning

  • 摘要:   目的  基于细胞焦亡相关基因(PRGs),构建肺腺癌预后模型,并评估其与免疫调节的关联。  方法  从TCGA数据库中获取肺腺癌基因表达和临床数据,通过DESeq2法获得差异表达PRGs;将患者分层抽样后按7∶3的比例划分为训练集和验证集,通过Cox回归和Lasso回归筛选目标因子并构建预后模型;在训练集、验证集和3个测试集(GSE30219、GSE31210和GSE50081)中通过生存分析、ROC曲线、Cox回归分析等评估预后模型的预测能力;绘制列线图观察预后模型联合临床特征在预后评估中的作用;分析预后模型与免疫细胞浸润的相关性。  结果  本研究构建了由CPA3、FAT1、MST1和TFAP2A等4个PRGs组成的肺腺癌预后模型。根据预后模型计算患者的风险评分,以中位值为界将患者分为高风险组和低风险组。高风险组患者预后较差(P < 0.05);预后模型风险评分对肺腺癌患者具有良好的生存预测价值,并可作为独立的不良预后因素;基于预后模型和临床特征建立的列线图可有效预测患者的生存状态。免疫浸润分析表明高风险组患者处于免疫失调状态,CD274、CD276等免疫检查点分子表达显著升高。  结论  基于CPA3、FAT1、MST1和TFAP2A的预后模型可有效预测肺腺癌患者的预后,并与患者的免疫状态相关,可作为患者治疗及预后评价的指标。

     

  • 图  1  预后模型在TCGA数据集中的预后评估能力

    注:A~C为Kaplan-Meier曲线;D~F为ROC曲线;G~I为多因素Cox回归分析。

    Figure  1.  Predictive performance of prognostic model in the TCGA cohort

    图  2  预后模型在外部验证集中的预后评估能力

    注:A~C为Kaplan-Meier曲线;D~F为ROC曲线;G~I为多因素Cox回归分析。

    Figure  2.  Predictive performance of prognostic model in the external validation cohort

    图  3  列线图模型的构建与评估

    注:A为列线图模型;B为校准曲线;C为决策曲线。

    Figure  3.  Construction and evaluation of the nomogram model

  • [1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. doi: 10.3322/caac.21763
    [2] 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. doi: 10.3760/cma.j.cn112152-20240119-00035

    ZHENG R S, CHEN R, HAN B F, et al. Prevalence of malignant tumors in China in 2022[J]. Chinese Journal of Oncology, 2024, 46(3): 221-231. doi: 10.3760/cma.j.cn112152-20240119-00035
    [3] TSUBOI M, HERBST R S, JOHN T, et al. Overall survival with osimertinib in resected EGFR-mutated NSCLC[J]. N Engl J Med, 2023, 389(2): 137-147. doi: 10.1056/NEJMoa2304594
    [4] LIU X, XIA S Y, ZHANG Z B, et al. Channelling inflammation: gasdermins in physiology and disease[J]. Nat Rev Drug Discov, 2021, 20(5): 384-405. doi: 10.1038/s41573-021-00154-z
    [5] 高英, 陈微楠, 朱雪琼, 等. 细胞焦亡的生物学机制及其在癌症中的作用研究进展[J]. 浙江医学, 2021, 43(4): 453-456.

    GAO Y, CHEN W N, ZHU X Q, et al. Research progress on the biological mechanism of pyrodeath and its role in cancer[J]. Zhejiang Medical Journal, 2021, 43(4): 453-456.
    [6] RAO Z P, ZHU Y T, YANG P, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics, 2022, 12(9): 4310-4329. doi: 10.7150/thno.71086
    [7] KHAN M, AI M L, DU K P, et al. Pyroptosis relates to tumor microenvironment remodeling and prognosis: a pan-cancer perspective[J]. Front Immunol, 2022, 13: 1062225. DOI: 10.3389/fimmu.2022.1062225.
    [8] PENG L, WEN L, SHI Q F, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation[J]. Cell Death Dis, 2020, 11(11): 978. DOI: 10.1038/s41419-020-03178-2.
    [9] ZENG D Q, YE Z L, SHEN R F, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures[J]. Front Immunol, 2021, 12: 687975. DOI: 10.3389/fimmu.2021.687975.
    [10] LIU W, PENG J W, XIAO M Z, et al. The implication of pyroptosis in cancer immunology: current advances and prospects[J]. Genes Dis, 2023, 10(6): 2339-2350. doi: 10.1016/j.gendis.2022.04.019
    [11] YANG J, LIU S J, LI Y Z, et al. FABP4 in macrophages facilitates obesity-associated pancreatic cancer progression via the NLRP3/IL-1β axis[J]. Cancer Lett, 2023, 575: 216403. DOI: 10.1016/j.canlet.2023.216403.
    [12] 周静雯, 陈文艳, 钱莉. GSDMD介导的细胞焦亡与肿瘤发生发展关系的研究进展[J]. 中国肿瘤生物治疗杂志, 2023, 30(6): 511-516.

    ZHOU J W, CHEN W Y, QIAN L. Advances in the relationship between GSDMD-mediated pyroptosis and tumor development[J]. Chinese Journal of Cancer Biotherapy, 2023, 30(6): 511-516.
    [13] LI F Q, ZHANG X Q, HO W, et al. mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy[J]. Nat Commun, 2023, 14(1): 4223. DOI: 10.1038/s41467-023-39938-9.
    [14] WEI X, XIE F, ZHOU X X, et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol, 2022, 19(9): 971-992. doi: 10.1038/s41423-022-00905-x
    [15] BANTULÀ M, ARISMENDI E, TUBITA V, et al. Effect of obesity on the expression of genes associated with severe asthma-a pilot study[J]. J Clin Med, 2023, 12(13): 4398. DOI: 10.3390/jcm12134398.
    [16] ATIAKSHIN D, KOSTIN A, TROTSENKO I, et al. Carboxypeptidase A3-A key component of the protease phenotype of mast cells[J]. Cells, 2022, 11(3): 570. DOI: 10.3390/cells11030570.
    [17] WANG Z Y, LIN K, XIAO H. A pan-cancer analysis of the FAT1 in human tumors[J]. Sci Rep, 2022, 12(1): 21598. DOI: 10.1038/s41598-022-26008-1.
    [18] 李雅雯, 程保辉, 赵海亮. Hippo通路在适应性免疫中的作用研究进展[J]. 医学综述, 2022, 28(4): 654-659.

    LI Y W, CHENG B H, ZHAO H L. Research Progress of Role of Hippo Pathway in Adaptive Immunity[J]. Medical Recapitulate, 2022, 28(4): 654-659.
    [19] ZHANG L L, LU J, LIU R Q, et al. Chromatin accessibility analysis reveals that TFAP2A promotes angiogenesis in acquired resistance to anlotinib in lung cancer cells[J]. Acta pharmacologica Sinica, 2020, 41(10): 1357-1365. doi: 10.1038/s41401-020-0421-7
    [20] CAO Q, FENG D D, HE J, et al. Involvement of TFAP2A in the activation of GSDMD gene promoter in hyperoxia-induced ALI[J]. Exp Cell Res, 2021, 401(1): 112521. DOI: 10.1016/j.yexcr.2021.112521.
    [21] 郭莹, 高天慧, 赵孟阳, 等. 晚期非小细胞肺癌淋巴细胞亚群及细胞因子与免疫疗效的关系研究[J]. 中华全科医学, 2022, 20(9): 1462-1465. doi: 10.16766/j.cnki.issn.1674-4152.002623

    GUO Y, GAO T H, ZHAO M Y, et al. Study on the relationship between lymphocyte subsets, cytokines and immune efficacy in advanced non-small cell lung cancer[J]. Chinese Journal of General Practice, 2022, 20(9): 1462-1465. doi: 10.16766/j.cnki.issn.1674-4152.002623
    [22] WANG C, LI Y, JIA L F, et al. CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance[J]. Cell stem cell, 2021, 28(9): 1597-1613.
  • 加载中
图(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 网络出版日期:  2025-02-13

目录

    /

    返回文章
    返回