留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

安顺地区职业人群肺结节检出情况及危险因素探讨

冯颖 胡玫瑰 程义局 范茂飞

冯颖, 胡玫瑰, 程义局, 范茂飞. 安顺地区职业人群肺结节检出情况及危险因素探讨[J]. 中华全科医学, 2025, 23(1): 26-30. doi: 10.16766/j.cnki.issn.1674-4152.003828
引用本文: 冯颖, 胡玫瑰, 程义局, 范茂飞. 安顺地区职业人群肺结节检出情况及危险因素探讨[J]. 中华全科医学, 2025, 23(1): 26-30. doi: 10.16766/j.cnki.issn.1674-4152.003828
FENG Ying, HU Meigui, CHENG Yiju, FAN Maofei. Prevalence and risk factors of pulmonary nodules among the occupational population in Anshun[J]. Chinese Journal of General Practice, 2025, 23(1): 26-30. doi: 10.16766/j.cnki.issn.1674-4152.003828
Citation: FENG Ying, HU Meigui, CHENG Yiju, FAN Maofei. Prevalence and risk factors of pulmonary nodules among the occupational population in Anshun[J]. Chinese Journal of General Practice, 2025, 23(1): 26-30. doi: 10.16766/j.cnki.issn.1674-4152.003828

安顺地区职业人群肺结节检出情况及危险因素探讨

doi: 10.16766/j.cnki.issn.1674-4152.003828
基金项目: 

贵州省卫生健康委科学技术基金项目 gzwkj2023-126

详细信息
    通讯作者:

    程义局,E-mail:chengchengyiju@126.com

  • 中图分类号: R734.2 R730.4

Prevalence and risk factors of pulmonary nodules among the occupational population in Anshun

  • 摘要:   目的  肺结节作为早期肺癌最常见的临床征象,早期检出对肺癌防治具有重要意义。本研究基于安顺地区呼吸疾病筛查队列,分析安顺地区职业人群中肺结节特征并逐一探讨危险因素,为推动该地区肺癌防治、加强肺结节人群的管理提供数据支持。  方法  以安顺市人民医院2022年6月—2023年12月经胸部低剂量螺旋CT(LDCT)筛查的2 730名职业人群为研究对象,以问卷形式收集研究对象的人口学特征及个人行为习惯等信息,综合问卷信息及结节影像学特征,探讨肺结节、阳性结节的危险因素。  结果  (1) 职业人群检出肺结节1 921例,总检出率为70.36%,其中阳性结节914例,占总人群的33.48%,矿工人群中肺结节检出率最高。(2)男性、已婚、初中学历、吸烟史、二手烟暴露史、厨房无油烟机排风、接触有害物质且接触时间≥1年、父母呼吸系统疾病史是肺结节的独立危险因素。(3)不同职业人群间,肺结节的数目、位置存在差异,质地、大小、是否阳性在不同职业人群间差异无统计学意义。(4)厨房无油烟机排风、年龄>50岁、吸烟指数>30包年是交警阳性结节的独立危险因素。年龄>50岁、吸烟指数>30包年是矿工阳性结节的独立危险因素。厨房无油烟机排风是环卫、司机阳性结节的独立危险因素。  结论  肺结节在职业人群中高发,男性、已婚、吸烟史、二手烟暴露史、有害物质接触史、家族呼吸系统病史等是肺结节的独立危险因素。不同职业人群间肺结节的数目、位置存在差异。厨房无油烟机排风是各职业人群阳性结节的独立危险因素。

     

  • 图  1  不同职业肺结节检出率

    Figure  1.  Detection rate of pulmonary nodules across different occupational group

    表  1  肺结节检出情况

    Table  1.   Detection of pulmonary nodules

    LUNG-RADS分级 例(%) 结节性质 例(%)
    1 824(30.18) 阳性 914(33.48)
    2 1 262(46.23) 阴性 1 007(36.89)
    3 528(19.34) 809(29.63)
    4A 96(3.52)
    4B 15(0.55)
    4X 1(0.04)
    S 0
    C 2(0.07)
    下载: 导出CSV

    表  2  变量赋值情况

    Table  2.   Variable assignment

    变量 赋值 变量 赋值 变量 赋值
    性别 学历 吸烟指数(包年)
      女性 0   文盲 0   <30 0
      男性 1   小学 1   ≥30 1
    婚姻   初中 2 厨房有无油烟机排风
      未婚 0   高中及中专 3   有 0
      已婚 1   本科及大专 4   无 1
    有害物质接触史   研究生及以上 5 同事吸烟情况
      未接触 0 个人吸烟   不吸烟 0
      接触时间<1年 1   从不吸烟 0   吸烟 1
      接触时间≥1年 2   吸烟 1 同事是否戒烟
    父亲患呼吸系统疾病 母亲患呼吸系统疾病   已戒烟 0
      否 0   否 0
      是 1   是 1
    下载: 导出CSV

    表  3  肺结节影响因素的二元logistic回归分析

    Table  3.   Binary logistic regression analysis of factors influencing pulmonary nodules

    变量 B SE Waldχ2 P OR 95% CI
    性别(男性) 0.237 0.092 6.640 0.010 1.267 1.058~1.517
    婚姻状况(已婚) 0.621 0.260 5.717 0.017 1.861 1.118~3.095
    学历
      小学 0.309 0.164 3.556 0.059 1.163 0.988~1.879
      初中 0.040 0.151 8.459 0.004 1.552 1.154~2.087
      高中/中专 0.238 0.171 1.937 0.614 1.269 0.907~1.774
      本科/大专 0.093 0.179 0.270 0.603 1.098 0.773~1.519
      研究生及以上 0.215 1.232 0.010 0.919 1.133 0.101~12.684
    有害物质接触史
      接触时间<1年 0.257 0.166 2.383 0.123 1.293 0.933~1.790
      接触时间≥1年 0.301 0.123 6.048 0.014 1.352 1.063~1.719
    厨房有无油烟机排风(无) 0.400 0.112 12.763 <0.001 1.492 1.198~1.859
    个人吸烟(吸烟) 0.973 0.508 10.173 0.013 3.765 1.068~ 5.412
    吸烟指数(>30包年) 0.414 0.140 8.708 0.003 1.513 1.149~1.991
    同事吸烟情况(吸烟) 0.274 0.088 9.749 0.002 1.315 1.107~1.562
    同事是否戒烟(未戒烟) 0.741 0.295 6.299 0.012 2.098 1.176~3.742
    母亲患病(是) 0.375 0.142 7.009 0.008 1.454 1.102~1.919
    父亲患病(是) 0.236 0.132 4.838 0.047 1.364 1.056~ 1.684
    下载: 导出CSV

    表  4  不同职业人群的肺结节影像学特征[例(%)]

    Table  4.   Imaging characteristics of pulmonary nodules in different occupational populations[cases(%)]

    项目 交警
    (n=148)
    矿工
    (n=657)
    环卫
    (n=743)
    城管
    (n=41)
    司机
    (n=332)
    总计
    (n=1 921)
    χ2 P
    数目 15.135 <0.001
      单发 69(46.62) 223(33.94) 304(40.92) 20(48.78) 138(41.57) 754(39.30)
      多发 79(53.38) 434(66.06) 439(59.08) 21(51.22) 194(58.43) 1 167(60.70)
    位置 10.212 <0.001
      左肺上叶 59(39.86) 207(31.51) 233(31.36) 13(31.71) 119(35.84) 631(32.85)
      左肺下叶 27(18.25) 121(18.42) 140(18.84) 10(24.39) 75(22.59) 373(19.42)
      右肺上叶 20(13.51) 152(23.14) 153(20.59) 4(9.76) 63(18.98) 392(20.41)
      右肺中叶 18(12.16) 61(9.28) 79(10.63) 6(14.63) 33(9.94) 197(10.26)
      右肺下叶 24(16.22) 116(17.65) 138(18.58) 8(19.51) 42(12.65) 328(17.06)
    质地 19.725 0.511
      实性 89(60.14) 438(66.67) 514(69.18) 28(68.29) 242(72.89) 1 311(68.25)
      纯磨玻璃 53(35.81) 204(31.05) 220(29.61) 11(26.83) 88(26.51) 576(29.98)
      部分实性 6(4.05) 15(2.28) 9(1.21) 2(4.88) 2(0.60) 34(1.77)
    直径 7.709 0.122
      <5 mm 75(50.68) 263(40.03) 422(56.80) 22(53.66) 219(65.96) 1 001(52.10)
      5~15 mm 72(48.65) 387(58.90) 315(42.40) 18(43.90) 113(34.04) 905(47.10)
      >15 mm 1(0.67) 7(1.07) 6(0.80) 1(2.44) 0 15(0.80)
    性质 7.890 0.051
      阳性 74(50.00) 386(58.75) 319(42.93) 20(48.78) 115(34.64) 914(47.58)
      阴性 74(50.00) 271(41.25) 424(57.07) 21(51.22) 217(65.36) 1 007(52.42)
    下载: 导出CSV

    表  5  不同职业人群肺结节影响因素变量赋值情况

    Table  5.   Variable assignment of factors influencing pulmonary nodules in different occupational populations

    变量 赋值 变量 赋值 变量 赋值
    性别 从业年限(年) 吸烟指数(包年)
      女性 0   <3 0   0~14 0
      男性 1   3~5 1   15~30 1
    婚姻   6~10 2   >30 2
      未婚 0   11~20 3 是否做饭
      已婚 1   >20 4   否 0
    年龄 个人吸烟   是 1
      <50岁 0   从不吸烟 0 厨房有无油烟机排风
      ≥50岁 1   吸烟 1   有 0
      无 1
    下载: 导出CSV

    表  6  交警人群不同性质结节影响因素的二元logistic回归分析

    Table  6.   Binary logistic regression analysis of factors influencing nodule characteristics in the traffic police population

    变量 B SE Waldχ2 P OR 95% CI
    性别(男性) 1.247 0.475 6.884 0.009 1.287 1.113~2.729
    个人吸烟(吸烟) 1.675 0.768 5.661 0.026 1.998 1.201~ 3.475
    厨房有无油烟机排风(无) 0.879 0.344 6.531 0.011 2.409 1.227~4.728
    年龄(≥50岁) 1.064 0.484 4.837 0.028 0.345 0.134~0.891
    吸烟指数(>30包年) -0.268 0.388 0.478 0.489 0.765 0.357~1.636
    注:以性别为女性、从不吸烟、有厨房油烟机排风、年龄 < 50岁、吸烟指数0~14包年为参照。
    下载: 导出CSV

    表  7  矿工人群不同性质结节影响因素的二元logistic回归分析

    Table  7.   Binary logistic regression analysis of factors influencing nodule types in the miner population

    变量 B SE Waldχ2 P OR 95% CI
    年龄(≥50岁) 0.483 0.202 5.749 0.017 1.617 0.416~1.916
    吸烟指数(包年)
      15~30 -0.223 0.195 1.315 0.251 0.800 0.546~1.171
      >30 1.567 0.342 1.480 0.047 1.268 1.216~ 1.998
    注:以年龄 < 50岁、吸烟指数0~14包年为参照。
    下载: 导出CSV
  • [1] SUNG H, FEERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [2] CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. doi: 10.1097/CM9.0000000000001474
    [3] OUDKERK M, LIU S, HEUVELMANS M A, et al. Lung cancer LDCT screening and mortality reduction-evidence, pitfalls and future perspectives[J]. Nat Rev Clin Oncol, 2021, 18(3): 135-151. doi: 10.1038/s41571-020-00432-6
    [4] MAZZONE P J, SILVESTRI G A, SOUTER L H, et al. Screening for lung cancer: CHEST guideline and expert panel report[J]. Chest, 2021, 160(5): e427-e494. doi: 10.1016/j.chest.2021.06.063
    [5] International Early Lung Cancer Action Program Investigators, HENSCHKE C I, YANKELEVITZ D F, et al. Survival of patients with stage Ⅰ lung cancer detected on CT screening[J]. N Engl J Med, 2006, 355(17): 1763-1771. doi: 10.1056/NEJMoa060476
    [6] National Lung Screening Trial Research Team, ABERLE D R, ADAMS A M, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N Engl J Med, 2011, 365(5): 395-409. doi: 10.1056/NEJMoa1102873
    [7] DE K H J, VAN D A C, DE J P, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial[J]. N Engl J Med, 2020, 382(6): 503-513. doi: 10.1056/NEJMoa1911793
    [8] CHELALA L, HOSSAIN R, KAZEROONI E A, et al. Lung-RADS version 1.1: challenges and a look ahead, from the AJR special series on radiology reporting and data systems[J]. AJR Am J Roentgenol, 2021, 216(6): 1411-1422. doi: 10.2214/AJR.20.24807
    [9] 中华预防医学会. 中国肺癌筛查标准(T/CPMA 013-2020)[J]. 中华肿瘤杂志, 2021, 43(1): 1-7.

    Chinese Preventive Medicine Association. Lung cancer screening guideline of China(T/CPMA 013-2020)[J]. Chinese Journal of Oncology, 2021, 43(1): 1-7.
    [10] 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版)[J]. 中华肿瘤杂志, 2022, 44(6): 457-490. doi: 10.3760/cma.j.cn112152-20220413-00255

    Oncology Society of Chinese Medical Association, Chinese Medical Association Publishing House. Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer(2022 edition)[J]. Chinese Journal of Oncology, 2022, 44(6): 457-490. doi: 10.3760/cma.j.cn112152-20220413-00255
    [11] AU-YONG I T H, HAMILTON W, RAWLINSON J, et al. Pulmonary nodules[J]. BMJ, 2020, 371: m3673. DOI: 10.1136/bmj.m3673.
    [12] 李鑫, 冯小双, 张愉涵, 等. 肺癌社区高危人群队列研究进展[J]. 中华流行病学杂志, 2021, 42(7): 1174-1178. doi: 10.3760/cma.j.cn112338-20210118-00041

    LI X, FENG X S, ZHANG Y H, et al. Progress in cohort study of lung cancer in high-risk population in communities[J]. Chinese Journal of Epidemiology, 2021, 42(7): 1174-1178. doi: 10.3760/cma.j.cn112338-20210118-00041
    [13] 周清华, 范亚光, 王颖, 等. 中国肺部结节分类、诊断与治疗指南(2016年版)[J]. 中国肺癌杂志, 2016, 19(12): 793-798. doi: 10.3779/j.issn.1009-3419.2016.12.12

    ZHOU Q H, FAN Y G, WANG Y, et al. China National Guideline of Classification, Diagnosis and Treatment for Lung Nodules(2016 Version)[J]. Chinese Journal of Lung Cancer, 2016, 19(12): 793-798. doi: 10.3779/j.issn.1009-3419.2016.12.12
    [14] 包爱华, 郭海英, 何之彦, 等. 上海市松江城区某社区老年居民肺部结节的发生率和易发因素分析[J]. 临床肺科杂志, 2019, 24(6): 1061-1065. doi: 10.3969/j.issn.1009-6663.2019.06.025

    BA A H, GUO H Y, HE Z Y, et al. Incidence and high-susceptibility factors of pulmonary nodules in residents of a certain community in Songjiang District, Shanghai[J]. Journal of Clinical Pulmonary Medicine, 2019, 24(6): 1061-1065. doi: 10.3969/j.issn.1009-6663.2019.06.025
    [15] SWENSEN S J, JETT J R, HARTMAN T E, et al. CT screening for lung cancer: five-year prospective experience[J]. Radiology, 2005, 235(1): 259-265. doi: 10.1148/radiol.2351041662
    [16] PEDERSEN J H, ASHRAF H, DIRKSEN A, et al. The Danish randomized lung cancer CT screening trial: overall design and results of the prevalence round[J]. J Thorac Oncol, 2009, 4(5): 608-614. doi: 10.1097/JTO.0b013e3181a0d98f
    [17] 鱼涛, 张雪艳, 王忠旭, 等. 不同粒径谱汽油发动机尾气气-液界面染毒对BEAS-2B细胞存活率的影响[J]. 中华劳动卫生职业病杂志, 2017, 35(6): 414-421. doi: 10.3760/cma.j.issn.1001-9391.2017.06.004

    YU T, ZHANG X Y, WANG Z X, et al. Evaluation of the viability of BEAS-2B cells exposed to gasoline engine exhaust with different particle sizes by air-liquid interface[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2017, 35(6): 414-421. doi: 10.3760/cma.j.issn.1001-9391.2017.06.004
    [18] 杭文璐, 李婉君, 许乘铭, 等. 煤工尘肺患者肺结节检出状况和高危结节危险因素分析[J]. 工业卫生与职业病, 2024, 50(1): 31-35.

    HANG W L, LI W J, XU C M, et al. Prevalence of pulmonary nodules in patients of coal worker's pneumoconiosis and analysis of risk factors of high-risk nodules[J]. Industrial Health and Occupational Diseases, 2024, 50(1): 31-35.
    [19] 孟珊, 惠东明, 王坤, 等. 基于影像组学的煤工尘肺结节分析联合临床因素预测肺癌发生的价值[J]. 中华全科医学, 2023, 21(1): 10-14.

    ME S, HUI D M, WANG K, et al. Value of analysis of coal workers ' pneumoconiosis nodules based on radiomics combined with clinical factors in predicting the occurrence of lung cancer[J]. Chinese Journal of General Practice, 2023, 21(1): 10-14.
    [20] FANG R, YANG Y, HAN H C, et al. Analysis of risk factors for stage I lung adenocarcinoma using low-dose high-resolution computed tomography[J]. Oncol Lett, 2018, 16(2): 2483-2489.
    [21] 曹洪丽, 于盼盼, 刘自金, 等. 幽门螺旋杆菌感染与肺结节及其危险因素相关性分析研究[J]. 解放军预防医学杂志, 2021, 39(1): 84-86.

    CAO H L, YU P P, LIU Z J, et al. Analysis of correlation between helicobacter pylori infection and pulmonary nodules and their risk factors[J]. Journal of Preventive Medicine of Chinese People ' s Liberation Army, 2021, 39(1): 84-86.
    [22] PHUA C K, SIM W Y, SEN T K, et al. Evaluation of pulmonary nodules in Asian population[J]. J Thorac Dis, 2016, 8(5): 950-957.
    [23] 徐国厚, 黄海峡, 陈斌, 等. 单体检中心23 695例体检者首次胸部低剂量CT筛查结果及肺结节相关易感因素的研究[J]. 复旦学报(医学版), 2020, 47(5): 654-659, 668.

    XU G H, HUANG H X, CHEN B, et al. A study on the first chest low-dose CT screening and susceptible factors of pulmonary nodules in 23695 physical examinees in a medical examination center[J]. Fudan University Journal of Medical Sciences, 2020, 47(5): 654-659, 668.
    [24] 廖俊蕾, 柳弥. 健康体检人群胸部低剂量螺旋CT检出肺部结节及肺癌情况研究[J]. 临床肺科杂志, 2020, 25(11): 1722-1724, 1728.

    LIU J L, LIU M. Analysis of the result of pulmonary nodules and lung cancer detected by low-dose spiral CT in healthy examination people[J]. Journal of Clinical Pulmonary Medicine, 2020, 25(11): 1722-1724, 1728.
    [25] MACMAHON H, NAIDICH D P, GOO J M, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017[J]. Radiology, 2017, 284(1): 228-243.
    [26] YANG D W, LIU Y, BAI C X, et al. Epidemiology of lung cancer and lung cancer screening programs in China and the United States[J]. Cancer Letter, 2020, 468: 82-87.
    [27] ZHONG L, GOLDBERG M S, PARENT M E, et al. Exposure to environmental tobacco smoke and the risk of lung cancer: a meta-analysis[J]. Lung Cancer, 2000, 27(1): 3-18. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0169500299000938&originContentFamily=serial&_origin=article&_ts=1432343595&md5=ba5becff97c8b3ff9f858553f5eb2230
    [28] ZENG H M, CHEN W Q, ZHENG R S, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5): e555-e567.
    [29] JIA P L, ZHANG C, YU J J, et al. The risk of lung cancer among cooking adults: a meta-analysis of 23 observational studies[J]. J Cancer Res Clin Oncol, 2018, 144(2): 229-240.
    [30] 李运, 陈克终, 隋锡朝, 等. 孤立性肺结节良恶性判断数学预测模型的建立[J]. 北京大学学报(医学版), 2011, 43(3): 450-454.

    LI Y, CHEN K Z, SUI X Z, et al. Establishment of a mathematical prediction model to evaluate the probability of malignancy or benign in patients with solitary pulmonary nodules[J]. Journal of Peking University: Health Sciences, 2011, 43(3): 450-454.
    [31] 王通, 修语池, 王彬, 等. 肺磨玻璃样结节危险因素分析[J]. 临床军医杂志, 2020, 48(7): 846-847.

    WANG T, XIU Y C, WANG B, et al. Risk factors analysis of ground glass pulmonary nodule[J]. Clinical Journal of Medical Officers, 2020, 48(7): 846-847.
    [32] 孙新然, 赵红, 赵大海, 等. 基于CT影像组学构建模型对实性肺结节鉴别的价值[J]. 中华全科医学, 2023, 21(1): 15-18, 91. doi: 10.16766/j.cnki.issn.1674-4152.002801

    SUN X R, ZHAO H, ZHAO D H, et al. The value of establishing a model in the differentiation of solid pulmonary nodules based on CT radiomics[J]. Chinese Journal of General Practice, 2023, 21(1): 15-18, 91. doi: 10.16766/j.cnki.issn.1674-4152.002801
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-03
  • 网络出版日期:  2025-02-13

目录

    /

    返回文章
    返回