留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于癌症免疫周期筛选结直肠癌免疫联合治疗的新靶点

曾薇 唐菊彬 陈向宙 陈玮 杨丹 朱金峰

曾薇, 唐菊彬, 陈向宙, 陈玮, 杨丹, 朱金峰. 基于癌症免疫周期筛选结直肠癌免疫联合治疗的新靶点[J]. 中华全科医学, 2025, 23(1): 31-35. doi: 10.16766/j.cnki.issn.1674-4152.003829
引用本文: 曾薇, 唐菊彬, 陈向宙, 陈玮, 杨丹, 朱金峰. 基于癌症免疫周期筛选结直肠癌免疫联合治疗的新靶点[J]. 中华全科医学, 2025, 23(1): 31-35. doi: 10.16766/j.cnki.issn.1674-4152.003829
ZENG Wei, TANG Jubin, CHEN Xiangzhou, CHEN Wei, YANG Dan, ZHU Jinfeng. Screening novel targets for combination immunotherapy of colorectal cancer based on cancer immune cycle[J]. Chinese Journal of General Practice, 2025, 23(1): 31-35. doi: 10.16766/j.cnki.issn.1674-4152.003829
Citation: ZENG Wei, TANG Jubin, CHEN Xiangzhou, CHEN Wei, YANG Dan, ZHU Jinfeng. Screening novel targets for combination immunotherapy of colorectal cancer based on cancer immune cycle[J]. Chinese Journal of General Practice, 2025, 23(1): 31-35. doi: 10.16766/j.cnki.issn.1674-4152.003829

基于癌症免疫周期筛选结直肠癌免疫联合治疗的新靶点

doi: 10.16766/j.cnki.issn.1674-4152.003829
基金项目: 

国家自然科学基金青年科学基金项目 82103636

广东省基础与应用基础研究基金自然科学基金项目 2022A1515012613

详细信息
    通讯作者:

    朱金峰,E-mail:1533640679@qq.com

  • 中图分类号: R735.35 R735.37

Screening novel targets for combination immunotherapy of colorectal cancer based on cancer immune cycle

  • 摘要:   目的  目前免疫检查点抑制剂(ICI)已批准用于治疗不可切除或转移性高度微卫星不稳定型/错配修复缺陷型(dMMR/MSI-H型)结直肠癌患者。然而,约50%的dMMR/MSI-H型患者对ICI原发性耐药,而MSS/pMMR型患者对单药ICI的反应有限,因此目前亟待寻找免疫联合治疗的新靶点,进一步改善患者ICI的治疗疗效。  方法  本研究将癌症免疫周期评分与加权基因共表达网络和系统分析相结合,以筛选结直肠癌中的免疫抑制基因;使用GEPIA2数据库分析基因在结直肠癌组织中的表达特征;CIBERSORT评估基因表达与免疫细胞浸润水平的相关性;TIDE算法预测基因表达与患者免疫治疗疗效的关系;Kaplan-Meier生存分析比较基因高、低表达水平组接受免疫治疗后的预后差异;GSEA分析基因参与结直肠癌的发生、发展,影响患者预后的调控机制。  结果  癌症免疫周期评分、加权基因共表达网络和系统分析提示DDX27是结直肠癌免疫联合治疗的新靶点;DDX27在结直肠癌组织中呈显著高表达(P < 0.001),与患者较晚的N分期(P=0.005)、TNM分期(P=0.006)和抑制性免疫细胞的浸润水平呈正相关关系;DDX27高水平表达组患者接受免疫治疗的疗效不佳,且该组患者接受ICI治疗后的总生存期短于DDX27低水平表达组(7.2个月vs. 9.6个月);进一步分析显示DDX27可能通过调控RNA加工、代谢参与结直肠癌的发生、发展,影响患者的预后。  结论  鉴于DDX27可能通过促进抑制性免疫细胞浸润,调控RNA加工和代谢参与结直肠癌的发生、发展,因此靶向干扰DDX27可能作为结直肠癌免疫联合治疗的新策略。

     

  • 图  1  基于CIC信息对结直肠癌数据进行WGCNA分析

    注:基因集合模块与CIC的相关性热图,其中tan模块与CIC呈最显著负相关,darkorange与CIC呈最显著正相关。

    Figure  1.  WGCNA analysis of colorectal cancer data based on CIC information

    图  2  基因在结直肠癌组织中的差异表达及与darkorange模块的相关性

    注:GEPIA2数据库中6个基因在结直肠癌组织中的差异表达。aP<0.05。

    Figure  2.  Differential gene expression in colorectal cancer tissues and its correlation with the darkorange module

    图  3  DDX27的表达水平与结直肠癌患者接受免疫治疗后总生存的相关性

    Figure  3.  Correlation between DDX27 expression levels and overall survival after immunotherapy in patients with colorectal cancer

    表  1  不同DDX27表达水平结直肠癌患者临床病理特征比较[例(%)]

    Table  1.   Correlation analysis between DDX27 expression levels and clinicopathological features in colorectal cancer patients[cases(%)]

    项目 DDX27低水平表达(n=322) DDX27高水平表达(n=322) χ2 P
    T分期 0.221 0.639
      T1 & T2 65(10.1) 69(10.7)
      T3 & T4 257(39.9) 253(39.3)
    N分期 7.766 0.005
      N0 202(31.4) 168(26.1)
      N1~N2 120(18.6) 154(23.9)
    M分期 3.529 0.060
      M0 271(42.1) 256(39.8)
      M1 51(7.9) 66(10.3)
    TNM分期 7.620 0.006
      Ⅰ~Ⅱ期 201(31.2) 158(24.5)
      Ⅲ~Ⅳ期 121(18.8) 164(25.5)
    性别 0.056 0.813
      女性 152(23.6) 149(23.1)
      男性 170(26.4) 173(26.9)
    年龄 14.609 0.001
      ≤65岁 114(17.7) 162(25.2)
      >65岁 208(32.3) 160(24.8)
    下载: 导出CSV
  • [1] POULILIOU S, NIKOLAIDIS C, DROSATOS G. Current trends in cancer immunotherapy: a literature-mining analysis[J]. Cancer Immunol Immun, 2020, 69(12): 2425-2439. doi: 10.1007/s00262-020-02630-8
    [2] YAO Z C, LIN Z Y, WU W J. Global research trends on immunotherapy in cancer: a bibliometric analysis[J]. Hum Vaccines, 2023, 19(2): 2219191. DOI: 10.1080/21645515.2023.2219191.
    [3] ZHANG H Y, YU H Y, ZHAO G X, et al. Global research trends in immunotherapy for glioma: a comprehensive visualization and bibliometric analysis[J]. Front Endocrinol, 2023, 14: 1273634. DOI: 10.3389/fendo.2023.1273634.
    [4] LIU Y G, JIANG S T, ZHANG L, et al. Worldwide productivity and research trend of publications concerning tumor immune microenvironment (TIME): a bibliometric study[J]. Eur J Med Res, 2023, 28(1): 229. DOI: 10.1186/s40001-023-01195-3.
    [5] TAKEI S, TANAKA Y, LIN Y T, et al. Multiomic molecular characterization of the response to combination immunotherapy in MSS/pMMR metastatic colorectal cancer[J]. J Immunother Cancer, 2024, 12(2): e008210. DOI: 10.1136/jitc-2023-008210.
    [6] MELLMAN I, CHEN D S, POWLES T, et al. The cancer-immunity cycle: indication, genotype, and immunotype[J]. Immunity, 2023, 56(10): 2188-2205. doi: 10.1016/j.immuni.2023.09.011
    [7] HU Y, SUN H B, SHI W, et al. Immunogram defines four cancer-immunity cycle phenotypes with distinct clonal selection patterns across solid tumors[J]. J Transl Med, 2024, 22(1): 69. DOI: 10.1186/s12967-023-04765-5.
    [8] YANG J X, ZHANG C F. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(4): e1612. DOI: 10.1002/wnan.1612.
    [9] BAIDOIN F, ELSHIWY K, ELKERAIE Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr Drug Targets, 2021, 22(9): 998-1009. doi: 10.2174/18735592MTEx9NTk2y
    [10] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [11] ARAGHI M, SOERJOMATARAM I, JENKINS M, et al. Global trends in colorectal cancer mortality: projections to the year 2035[J]. Int J Cancer, 2019, 144(12): 2992-3000. doi: 10.1002/ijc.32055
    [12] JACOB S, JURINOVIC V, LAMPERT C, et al. The association of immunosurveillance and distant metastases in colorectal cancer[J]. J Cancer Res Clin, 2021, 147(11): 3333-3341. doi: 10.1007/s00432-021-03753-w
    [13] 曾薇, 刘翼, 李文婷, 等. 结直肠癌中差异性表达的外泌体lncRNA功能富集及通路分析[J]. 中华全科医学, 2022, 20(1): 141-143, 164.

    ZENG W, LIU Y, LI W T, et al. Functional enrichment and pathway analysis of differential expression of exosome lncRNA in colorectal cancer[J]. Chinese Journal of General Practice, 2022, 20(1): 141-143, 164.
    [14] GUPTA S. Screening for colorectal cancer[J]. Hematol Oncol Clin North Am, 2022, 36(3): 393-414. doi: 10.1016/j.hoc.2022.02.001
    [15] LUN W J, LUO C H. Second primary colorectal cancer in adults: a SEER analysis of incidence and outcomes[J]. BMC Gastroenterol, 2023, 23(1): 253. DOI: 10.1186/s12876-023-02893-2.
    [16] BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
    [17] CARGILL M, VENKATARAMAN R, LEE S. DEAD-Box RNA helicases and genome stability[J]. Genes (Basel), 2021, 12(10): 1471. DOI: 10.3390/genes12101471.
    [18] ZHENG B C, CHEN X D, LING Q Y, et al. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer[J]. Front Oncol, 2023, 13: 1278282. DOI: 10.3389/fonc.2023.1278282.
    [19] ALI M A M. The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis[J]. Int J Clin Oncol, 2021, 26(5): 795-825. doi: 10.1007/s10147-021-01892-1
    [20] WANG X Q, ZHANG B, LI Y W, et al. DEAD-box Helicase 27 promotes hepatocellular carcinoma progression through ERK signaling[J]. Technol Cancer Res Treat, 2021, 20: 15330338211055953. DOI: 10.1177/15330338211055953.
    [21] LI S, MA J F, ZHENG A, et al. DEAD-box helicase 27 enhances stem cell-like properties with poor prognosis in breast cancer[J]. J Transl Med, 2021, 19(1): 334. DOI: 10.1186/s12967-021-03011-0.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 网络出版日期:  2025-02-13

目录

    /

    返回文章
    返回