Screening novel targets for combination immunotherapy of colorectal cancer based on cancer immune cycle
-
摘要:
目的 目前免疫检查点抑制剂(ICI)已批准用于治疗不可切除或转移性高度微卫星不稳定型/错配修复缺陷型(dMMR/MSI-H型)结直肠癌患者。然而,约50%的dMMR/MSI-H型患者对ICI原发性耐药,而MSS/pMMR型患者对单药ICI的反应有限,因此目前亟待寻找免疫联合治疗的新靶点,进一步改善患者ICI的治疗疗效。 方法 本研究将癌症免疫周期评分与加权基因共表达网络和系统分析相结合,以筛选结直肠癌中的免疫抑制基因;使用GEPIA2数据库分析基因在结直肠癌组织中的表达特征;CIBERSORT评估基因表达与免疫细胞浸润水平的相关性;TIDE算法预测基因表达与患者免疫治疗疗效的关系;Kaplan-Meier生存分析比较基因高、低表达水平组接受免疫治疗后的预后差异;GSEA分析基因参与结直肠癌的发生、发展,影响患者预后的调控机制。 结果 癌症免疫周期评分、加权基因共表达网络和系统分析提示DDX27是结直肠癌免疫联合治疗的新靶点;DDX27在结直肠癌组织中呈显著高表达(P < 0.001),与患者较晚的N分期(P=0.005)、TNM分期(P=0.006)和抑制性免疫细胞的浸润水平呈正相关关系;DDX27高水平表达组患者接受免疫治疗的疗效不佳,且该组患者接受ICI治疗后的总生存期短于DDX27低水平表达组(7.2个月vs. 9.6个月);进一步分析显示DDX27可能通过调控RNA加工、代谢参与结直肠癌的发生、发展,影响患者的预后。 结论 鉴于DDX27可能通过促进抑制性免疫细胞浸润,调控RNA加工和代谢参与结直肠癌的发生、发展,因此靶向干扰DDX27可能作为结直肠癌免疫联合治疗的新策略。 Abstract:Objective At this stage, immune checkpoint inhibitors (ICIs) are approved for the treatment of colorectal cancer. However, about 50% of dMMR/MSI-H-type patients are primarily resistant to ICIs, and MSS/pMMR-type patients have limited response to single-agent ICIs; therefore, there is an urgent need to find new targets for immune-combination therapy to further improve the therapeutic efficacy of ICIs in patients. Methods In this study, we combined the Cancer Immune Cycle Score with the weighted gene co-expression network and systematic analyses to screen immunosuppressive genes in colorectal cancer; analyzed gene expression profiles in colorectal cancer tissues using the GEPIA2 database; CIBERSORT assessed the correlation between gene expression and the level of immune cell infiltration; the TIDE algorithm predicted the gene expression in relation to the efficacy of patient immunotherapy relationship; Kaplan-Meier survival analysis to compare the prognostic differences between groups with high and low expression levels of genes after receiving immunotherapy; and GSEA to analyze the regulatory mechanisms of genes involved in colorectal cancer genesis, development, and affecting the prognosis of patients. Results Cancer immune cycle score with weighted gene co-expression network and systematic analysis showed that DDX27 was an immunosuppressive target of colorectal cancer; DDX27 was significantly highly expressed in colorectal cancer tissues (P < 0.001), which was positively correlated with the patients ' later N stage (P=0.005), TNM stage (P=0.006) and infiltration level of suppressive immune cells; patients in the group with high levels of DDX27 expression were poorly treated with immunotherapy, and the overall survival of patients in this group treated with ICI was shorter than that in the group with low levels of DDX27 expression (7.2 months vs. 9.6 months); further analysis showed that DDX27 might be involved in the occurrence and development of colorectal cancer through the regulation of RNA processing and metabolism, and affect the prognosis of patients. Conclusion Targeting DDX27 may be a new target for immunotherapy of colorectal cancer by inhibiting the infiltration of immunosuppressive cells and interfering with tumorigenesis and development. -
Key words:
- Colorectal cancer /
- Cancer immune cycle /
- Immunotherapy
-
表 1 不同DDX27表达水平结直肠癌患者临床病理特征比较[例(%)]
Table 1. Correlation analysis between DDX27 expression levels and clinicopathological features in colorectal cancer patients[cases(%)]
项目 DDX27低水平表达(n=322) DDX27高水平表达(n=322) χ2值 P值 T分期 0.221 0.639 T1 & T2 65(10.1) 69(10.7) T3 & T4 257(39.9) 253(39.3) N分期 7.766 0.005 N0 202(31.4) 168(26.1) N1~N2 120(18.6) 154(23.9) M分期 3.529 0.060 M0 271(42.1) 256(39.8) M1 51(7.9) 66(10.3) TNM分期 7.620 0.006 Ⅰ~Ⅱ期 201(31.2) 158(24.5) Ⅲ~Ⅳ期 121(18.8) 164(25.5) 性别 0.056 0.813 女性 152(23.6) 149(23.1) 男性 170(26.4) 173(26.9) 年龄 14.609 0.001 ≤65岁 114(17.7) 162(25.2) >65岁 208(32.3) 160(24.8) -
[1] POULILIOU S, NIKOLAIDIS C, DROSATOS G. Current trends in cancer immunotherapy: a literature-mining analysis[J]. Cancer Immunol Immun, 2020, 69(12): 2425-2439. doi: 10.1007/s00262-020-02630-8 [2] YAO Z C, LIN Z Y, WU W J. Global research trends on immunotherapy in cancer: a bibliometric analysis[J]. Hum Vaccines, 2023, 19(2): 2219191. DOI: 10.1080/21645515.2023.2219191. [3] ZHANG H Y, YU H Y, ZHAO G X, et al. Global research trends in immunotherapy for glioma: a comprehensive visualization and bibliometric analysis[J]. Front Endocrinol, 2023, 14: 1273634. DOI: 10.3389/fendo.2023.1273634. [4] LIU Y G, JIANG S T, ZHANG L, et al. Worldwide productivity and research trend of publications concerning tumor immune microenvironment (TIME): a bibliometric study[J]. Eur J Med Res, 2023, 28(1): 229. DOI: 10.1186/s40001-023-01195-3. [5] TAKEI S, TANAKA Y, LIN Y T, et al. Multiomic molecular characterization of the response to combination immunotherapy in MSS/pMMR metastatic colorectal cancer[J]. J Immunother Cancer, 2024, 12(2): e008210. DOI: 10.1136/jitc-2023-008210. [6] MELLMAN I, CHEN D S, POWLES T, et al. The cancer-immunity cycle: indication, genotype, and immunotype[J]. Immunity, 2023, 56(10): 2188-2205. doi: 10.1016/j.immuni.2023.09.011 [7] HU Y, SUN H B, SHI W, et al. Immunogram defines four cancer-immunity cycle phenotypes with distinct clonal selection patterns across solid tumors[J]. J Transl Med, 2024, 22(1): 69. DOI: 10.1186/s12967-023-04765-5. [8] YANG J X, ZHANG C F. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(4): e1612. DOI: 10.1002/wnan.1612. [9] BAIDOIN F, ELSHIWY K, ELKERAIE Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr Drug Targets, 2021, 22(9): 998-1009. doi: 10.2174/18735592MTEx9NTk2y [10] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660 [11] ARAGHI M, SOERJOMATARAM I, JENKINS M, et al. Global trends in colorectal cancer mortality: projections to the year 2035[J]. Int J Cancer, 2019, 144(12): 2992-3000. doi: 10.1002/ijc.32055 [12] JACOB S, JURINOVIC V, LAMPERT C, et al. The association of immunosurveillance and distant metastases in colorectal cancer[J]. J Cancer Res Clin, 2021, 147(11): 3333-3341. doi: 10.1007/s00432-021-03753-w [13] 曾薇, 刘翼, 李文婷, 等. 结直肠癌中差异性表达的外泌体lncRNA功能富集及通路分析[J]. 中华全科医学, 2022, 20(1): 141-143, 164.ZENG W, LIU Y, LI W T, et al. Functional enrichment and pathway analysis of differential expression of exosome lncRNA in colorectal cancer[J]. Chinese Journal of General Practice, 2022, 20(1): 141-143, 164. [14] GUPTA S. Screening for colorectal cancer[J]. Hematol Oncol Clin North Am, 2022, 36(3): 393-414. doi: 10.1016/j.hoc.2022.02.001 [15] LUN W J, LUO C H. Second primary colorectal cancer in adults: a SEER analysis of incidence and outcomes[J]. BMC Gastroenterol, 2023, 23(1): 253. DOI: 10.1186/s12876-023-02893-2. [16] BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741. [17] CARGILL M, VENKATARAMAN R, LEE S. DEAD-Box RNA helicases and genome stability[J]. Genes (Basel), 2021, 12(10): 1471. DOI: 10.3390/genes12101471. [18] ZHENG B C, CHEN X D, LING Q Y, et al. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer[J]. Front Oncol, 2023, 13: 1278282. DOI: 10.3389/fonc.2023.1278282. [19] ALI M A M. The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis[J]. Int J Clin Oncol, 2021, 26(5): 795-825. doi: 10.1007/s10147-021-01892-1 [20] WANG X Q, ZHANG B, LI Y W, et al. DEAD-box Helicase 27 promotes hepatocellular carcinoma progression through ERK signaling[J]. Technol Cancer Res Treat, 2021, 20: 15330338211055953. DOI: 10.1177/15330338211055953. [21] LI S, MA J F, ZHENG A, et al. DEAD-box helicase 27 enhances stem cell-like properties with poor prognosis in breast cancer[J]. J Transl Med, 2021, 19(1): 334. DOI: 10.1186/s12967-021-03011-0. -