留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后疫情阶段重症新型冠状病毒感染患者的临床特征和危险因素分析

张玲玲 王穆群 郭锋

张玲玲, 王穆群, 郭锋. 后疫情阶段重症新型冠状病毒感染患者的临床特征和危险因素分析[J]. 中华全科医学, 2025, 23(2): 215-218. doi: 10.16766/j.cnki.issn.1674-4152.003870
引用本文: 张玲玲, 王穆群, 郭锋. 后疫情阶段重症新型冠状病毒感染患者的临床特征和危险因素分析[J]. 中华全科医学, 2025, 23(2): 215-218. doi: 10.16766/j.cnki.issn.1674-4152.003870
ZHANG Lingling, WANG Muqun, GUO Feng. Analysis of clinical characteristics and risk factors of severe COVID-19 patients in the post-epidemic stage[J]. Chinese Journal of General Practice, 2025, 23(2): 215-218. doi: 10.16766/j.cnki.issn.1674-4152.003870
Citation: ZHANG Lingling, WANG Muqun, GUO Feng. Analysis of clinical characteristics and risk factors of severe COVID-19 patients in the post-epidemic stage[J]. Chinese Journal of General Practice, 2025, 23(2): 215-218. doi: 10.16766/j.cnki.issn.1674-4152.003870

后疫情阶段重症新型冠状病毒感染患者的临床特征和危险因素分析

doi: 10.16766/j.cnki.issn.1674-4152.003870
基金项目: 

安徽省科技厅2023年安徽省临床医学研究转化专项项目 202304295107020074

;安徽省宿州市卫生健康科研项目 SZWJ2023a035

详细信息
    通讯作者:

    王穆群,E-mail:lianyunan1014@126.com

  • 中图分类号: R373.19 R563.14

Analysis of clinical characteristics and risk factors of severe COVID-19 patients in the post-epidemic stage

  • 摘要:   目的  分析新型冠状病毒感染(COVID-19)患者的临床特征, 探索可靠的临床指标来预测易进展为重症的高危人群。  方法  回顾性分析安徽医科大学附属宿州医院呼吸与危重症医学科2022年12月—2024年2月收治的85例COVID-19患者, 根据临床症状分为非重症组(47例)和重症组(38例), 比较2组患者的临床特征、血常规、C反应蛋白(CRP)、T淋巴细胞亚群之间的差异, 采用logistic回归分析并构建模型, 筛选出重症的危险因素, 并绘制ROC曲线, 比较各危险因素及联合应用对预测重症的价值。  结果  与非重症组比较, 重症组糖尿病患病率、BMI更高, 嗜酸性粒细胞、CD4+T淋巴细胞、CD8+T淋巴细胞更低, 差异均有统计学意义(P > 0.05)。逐步logistic回归分析显示CD4+T淋巴细胞、糖尿病和BMI是重症的影响因素。CD4+T淋巴细胞、BMI和糖尿病预测重症的ROC曲线下面积(AUC)分别为0. 877、0. 748和0. 663;灵敏度分别为81. 6%、60. 5%和36. 8%;特异度分别为85. 1%、93. 6%和95. 7%。而三者联合构建模型的AUC为0. 928, 灵敏度和特异度分别为97. 4%和76. 6%。  结论  CD4+T淋巴细胞降低单独或联合BMI值高和患糖尿病可以良好地预测COVID-19患者的病情严重性。

     

  • 图  1  各项危险因素单独及联合预测COVID-19重症的ROC曲线

    Figure  1.  ROC curves for individual and combined predictors of severe COVID-19 based on various risk factors

    表  1  非重症组与重症组COVID-19患者临床特征及实验室指标比较

    Table  1.   Clinical characteristics and laboratory results compared between non-severe and severe COVID-19 patients

    项目 总数(n=85) 重症组(n=38) 非重症组(n=47) 统计量 P
    性别[例(%)] 1.250a 0.264
    男性 48(56.47) 24(63.16) 24(51.06)
    女性 37(43.53) 14(36.84) 23(48.94)
    年龄(x±s,岁) 68.0±15.4 70.5±15.9 65.9±14.8 1.381b 0.171
    BMI(x±s) 24.1±2.6 25.4±2.9 23.0±1.7 4.837b < 0.001
    高血压[例(%)] 1.049a 0.306
    71(83.53) 30(78.95) 41(87.23)
    14(16.47) 8(21.05) 6(12.77)
    糖尿病[例(%)] 14.602a < 0.001
    69(81.18) 24(63.16) 45(95.74)
    16(18.82) 14(36.84) 2(4.26)
    慢阻肺[例(%)] < 0.001a 0.999
    77(90.59) 34(89.47) 43(91.49)
    8(9.41) 4(10.53) 4(8.51)
    冠心病[例(%)] 0.519a 0.471
    72(84.71) 31(81.58) 41(87.23)
    13(15.29) 7(18.42) 6(12.77)
    白细胞计数(x±s,×109/L) 7.0±3.1 6.9±3.6 7.1±2.6 0.409b 0.684
    中性粒细胞计数[M(P25, P75), ×109/L] 4.8(3.4, 6.9) 4.8(2.9, 6.9) 4.8(3.7, 6.6) -0.248c 0.804
    嗜酸性粒细胞计数[M(P25, P75), ×109/L] 0.01(0.00, 0.09) 0.00(0.00, 0.02) 0.03(0.01, 0.10) -3.553c < 0.001
    淋巴细胞计数[M(P25, P75), ×109/L] 1.01(0.75, 1.55) 0.85(0.64, 1.50) 1.07(0.82, 1.63) -1.485c 0.137
    CRP[M(P25, P75), mg/L] 13.5(4.6, 38.2) 13.6(6.0, 69.1) 13.0(3.3, 28.2) 1.821c 0.068
    CD4+T[M(P25, P75)] 335.0(180.0, 525.0) 192.5(97.0, 295.0) 490.0(335.0, 567.0) -5.941c < 0.001
    CD8+T[M(P25, P75)] 231.0(126.0, 320.0) 117.0(78.0, 169.0) 294.0(231.0, 423.0) -5.684c < 0.001
    CD4+/CD8+[M(P25, P75)] 1.45(0.91, 2.47) 1.47(0.90, 2.60) 1.45(1.09, 2.36) -0.115c 0.908
    注:a为χ2值,bt值,cZ值。
    下载: 导出CSV

    表  2  COVID-19患者重症影响因素的多因素logistic回归分析

    Table  2.   Multivariate logistic regression analysis of influencing factors of severe disease in patients with COVID-19

    变量 B SE Waldχ2 P OR(95% CI)
    糖尿病 3.225 1.134 8.088 0.004 25.160(2.725~232.210)
    BMI 0.272 0.135 4.071 0.044 1.313(1.007~1.710)
    CD4+T -0.011 0.003 16.680 < 0.001 0.989(0.983~0.994)
    下载: 导出CSV
  • [1] ANKA A U, TAHIR M I, ABUBAKAR S D, et al. Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management[J]. Scand J Immunol, 2021, 93(4): e12998. DOI: 10.1111/sji.12998.
    [2] CHEN N S, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513.
    [3] BHAT S A, SINGH G, BHAT W F, et al. Coronavirus disease-2019 and its current scenario: a review[J]. Clinical Ehealth, 2021, 4: 67-73.
    [4] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中华临床感染病杂志, 2023, 16(1): 1-9.

    National Health Commission of the People's Republic of China. Diagnosis and treatment plan for COVID-19 (trial version 10)[J]. Chin J Clin Infect Dis, 2023, 16(1): 1-9.
    [5] 沈梦媛, 李伟, 颜学兵, 等. 重症新型冠状病毒肺炎的危险因素分析及预测模型构建[J]. 中国感染与化疗杂志, 2022, 22(3): 249-254.

    SHEN M Y, LI W, YAN X B, et al. Developing a prediction model for severe coronavirus disease 2019 based on the analysis of early predictors[J]. Chin J Infect Chemother, 2022, 22(3): 249-254.
    [6] MIYASHITA N, HIGA F, AOKI Y, et al. Usefulness of the Legionella Score for differentiating from COVID-19 pneumonia to legionella pneumonia[J]. J Infect Chemother, 2022, 28(10): 1353-1357.
    [7] SONI M. Evaluation of eosinopenia as a diagnostic and prognostic indicator in COVID-19 infection[J]. Int J Lab Hematol, 2021, 43(Suppl 1): 137-141.
    [8] MU T, YI Z M, WANG M J, et al. Expression of eosinophil in peripheral blood of patients with COVID-19 and its clinical significance[J]. J Clin Lab Anal, 2021, 35(1): e23620. DOI: 10.1002/jcla.23620.
    [9] LINDSLEY A W, SCHWARTZ J T, ROTHENBERG M E. Eosinophil responses during COVID-19 infections and coronavirus vaccination[J]. J Allergy Clin Immunol, 2020, 146(1): 1-7. doi: 10.1016/j.jaci.2020.04.021
    [10] YUN H, SUN Z R, WU J, et al. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2 510 patients[J]. Clin Chim Acta, 2020, 507: 94-97.
    [11] 程玉生, 周云, 朱孟德, 等. 嗜酸性粒细胞减少在新型冠状病毒肺炎患者中的临床意义[J]. 中国呼吸与危重监护杂志, 2021, 20(5): 315-319.

    CHENG Y S, ZHOU Y, ZHU M D, et al. Clinical significance of eosinopenia in patients with coronavirus disease 2019[J]. Chinese Journal of Respiratory and Critical Care Medicine, 2021, 20(5): 315-319.
    [12] 王之旸, 何君, 程杨阳, 等. 2型糖尿病患者感染新型冠状病毒肺炎的临床特征及转归[J]. 中华内分泌代谢杂志, 2020, 36(8): 654-660.

    WANG Z Y, HE J, CHENG Y Y, et al. Clinical characteristics and outcomes of COVID-19 infected patients with type 2 diabetes[J]. Chin J Endocrinol Metab, 2020, 36(8): 654-660.
    [13] KALLIGEROS M, SHEHADEH F, MYLONA E K, et al. Association of obesity with disease severity among patients with Coronavirus Disease 2019[J]. Obesity (Silver Spring), 2020, 28(7): 1200-1204.
    [14] ANDERSON M R, GELERIS J, ANDERSON D R, et al. Body mass index and risk for intubation or death in SARS-CoV-2 Infection: a retrospective cohort study[J]. Ann Intern Med, 2020, 173(10): 782-790.
    [15] PETTIT N N, MACKENZIE E L, RIGWAY J P, et al. Obesity is associated with increased risk for mortality among hospitalized patients with COVID-19[J]. Obesity (Silver Spring), 2020, 28(10): 1806-1810.
    [16] SAHIN S, SEZER H, CICEK E, et al. The role of obesity in predicting the clinical outcomes of COVID-19[J]. Obes Facts, 2021, 14(5): 481-489.
    [17] 祁飞, 夏加伟, 张乐, 等. COVID-19患者急性期T淋巴细胞亚群及血常规的变化[J]. 昆明医科大学学报, 2020, 41(4): 56-59.

    QI F, XIA J W, ZHANG L, et al. Changes in Acute T lymphocyte Subsets and Blood Routine in Patients with Corona Virus Disease-2019 (COVID-19)[J]. J Kunming Med Univ, 2020, 41(4): 56-59.
    [18] DIAO B, WANG C H, TAN Y J, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19)[J]. Front Immunol, 2020, 11: 827. DOI: 10.3389/fimmu.2020.00827.
    [19] MAHMOODPOOR A, HOSSEINI M, SOLTANI-ZANGBAR S, et al. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression[J]. Mol Immunol, 2021, 138: 121-127.
    [20] 洪佳慧, 刘永洋, 房宇坤, 等. CRP/ALB联合肺实变对新型冠状病毒感染严重程度的预测模型[J]. 中华全科医学, 2024, 22(7): 1116-1120. doi: 10.16766/j.cnki.issn.1674-4152.003579

    HONG J H, LIU Y Y, FANG Y K, et al. CRP/ALB combined with lung consolidation in predictingthe Severity of COVID-19[J]. Chinese Journal of General Practice, 2024, 22(7): 1116-1120. doi: 10.16766/j.cnki.issn.1674-4152.003579
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 网络出版日期:  2025-03-27

目录

    /

    返回文章
    返回