留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外荧光成像在泌尿系疾病诊疗中的研究进展

张炜杰 阿卜杜热合曼·则比布拉 乔炳璋 木拉提·热夏提

张炜杰, 阿卜杜热合曼·则比布拉, 乔炳璋, 木拉提·热夏提. 近红外荧光成像在泌尿系疾病诊疗中的研究进展[J]. 中华全科医学, 2025, 23(2): 286-291. doi: 10.16766/j.cnki.issn.1674-4152.003887
引用本文: 张炜杰, 阿卜杜热合曼·则比布拉, 乔炳璋, 木拉提·热夏提. 近红外荧光成像在泌尿系疾病诊疗中的研究进展[J]. 中华全科医学, 2025, 23(2): 286-291. doi: 10.16766/j.cnki.issn.1674-4152.003887
ZHANG Weijie, Abudureheman·Zebibula, QIAO Bingzhang, Mulati·Rexiati. Research progress of near-infrared fluorescence imaging in the diagnosis and treatment of urinary system diseases[J]. Chinese Journal of General Practice, 2025, 23(2): 286-291. doi: 10.16766/j.cnki.issn.1674-4152.003887
Citation: ZHANG Weijie, Abudureheman·Zebibula, QIAO Bingzhang, Mulati·Rexiati. Research progress of near-infrared fluorescence imaging in the diagnosis and treatment of urinary system diseases[J]. Chinese Journal of General Practice, 2025, 23(2): 286-291. doi: 10.16766/j.cnki.issn.1674-4152.003887

近红外荧光成像在泌尿系疾病诊疗中的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.003887
基金项目: 

国家自然科学基金地区基金项目 82260139

国家自然科学基金地区基金项目 82360353

新疆维吾尔自治区自然科学基金青年科学基金项目 2022D01C763

详细信息
    通讯作者:

    木拉提·热夏提,E-mail:muratrixat@126.com

  • 中图分类号: R69

Research progress of near-infrared fluorescence imaging in the diagnosis and treatment of urinary system diseases

  • 摘要: 传统检查方法在泌尿系疾病的临床诊疗中发挥着重要作用,但这些方法往往存在检查耗时长、检查频繁等问题,从而导致X射线或放射性同位素过度暴露,以及造影剂过敏等风险。光学成像是一种无辐射、高时空分辨率和高灵敏度的实时成像技术,具有广泛的应用前景。相比于可见光,近红外光在穿透深度和降低组织自身荧光方面具有显著优势,可提供高信噪比的成像效果。其不仅能够清晰地展现泌尿系统的解剖结构,还可以用于无创评估肾功能水平及变化。此外,一些纳米探针因具有肾脏清除速率快及荧光强度优异等特点,可用于术中评估输尿管的受损及术后修复情况。同时,具有肿瘤靶向性的探针能够精确地标记肿瘤位置,从而协助术者切除肿瘤并判断切缘的性质,具备手术导航能力。作为当前的研究热点,近红外荧光成像在泌尿系疾病的诊断和治疗中展现出巨大的发展潜力。本文旨在综述相关荧光探针的制备策略及其在泌尿系统结构、功能和肿瘤特异性成像领域的研究进展。同时总结目前近红外荧光成像的局限性,并展望其未来的应用方向。

     

  • [1] STEIN J H, FADEM S Z. The renal circulation[J]. JAMA, 1978, 239(13): 1308-1312.
    [2] JOSHI G, KIM E Y, HANNA T N, et al. CT cystography for suspicion of traumatic urinary bladder injury: indications, technique, findings, and pitfalls in diagnosis: radiographics fundamentals | Online Presentation[J]. Radiographics, 2018, 38(1): 92-93. doi: 10.1148/rg.2018170125
    [3] COWAN N C. CT urography for hematuria[J]. Nat Rev Urol, 2012, 9(4): 218-226.
    [4] SILVERMAN S G, LEYENDECKER J R, AMIS E S J R. What is the current role of CT urography and MR urography in the evaluation of the urinary tract?[J]. Radiology, 2009, 250(2): 309-323.
    [5] THOMAS J A. Optical imaging probes for biomolecules: an introductory perspective[J]. Chem Soc Rev, 2015, 44(14): 4494-4500.
    [6] LI C Y, CHEN G C, ZHANG Y J, et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications[J]. J Am Chem Soc, 2020, 142(35): 14789-14804.
    [7] DING B B, XIAO Y L, ZHOU H, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1 000 nm for biological imaging in the second near-infrared subwindow[J]. J Med Chem, 2019, 62(4): 2049-2059.
    [8] HUANG Y, CHEN K, LIU L, et al. Single atom-engineered NIR-Ⅱ Gold clusters with ultrahigh brightness and stability for acute kidney injury[J]. Small, 2023, 19(30): e2300145. DOI: 10.1002/smll.202300145.
    [9] FANG Q L, WANG J, WU S S, et al. NIR-induced improvement of catalytic activity and antibacterial performance over AuAg nanorods in Rambutan-like Fe3O4@AgAu@PDA magnetic nanospheres[J]. J Hazard Mater, 2023, 445: 130616. DOI: 10.1016/j.jhazmat.2022.130616.
    [10] JIANG X Y, DU B J, TANG S H, et al. Photoacoustic imaging of nanoparticle transport in the kidneys at high temporal resolution[J]. Angew Chem Int Ed Engl, 2019, 58(18): 5994-6000.
    [11] LI L T, CHEN H Z, SHI Y J, et al. Human-Body-Temperature triggerable phase transition of W-VO2@PEG nanoprobes with strong and switchable NIR-Ⅱ absorption for deep and contrast-enhanced photoacoustic imaging[J]. ACS Nano, 2022, 16(2): 2066-2076.
    [12] HUANG J G, XIE C, ZHANG X D, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction[J]. Angew Chem Int Ed Engl, 2019, 58(42): 15120-15127.
    [13] CHOI H S, LIU W H, MISRA P, et al. Renal clearance of quantum dots[J]. Nat Biotechnol, 2007, 25(10): 1165-1170.
    [14] ZHOU C, LONG M, QIN Y P, et al. Luminescent gold nanoparticles with efficient renal clearance[J]. Angew Chem Int Ed Engl, 2011, 50(14): 3168-3172.
    [15] DU B J, JIANG X Y, DAS A, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nat Nanotechnol, 2017, 12(11): 1096-1102.
    [16] VENTUROLI D, RIPPE B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability[J]. Am J Physiol Renal Physiol, 2005, 288(4): F605-F613.
    [17] BOI R, EBEFORS K, NYSTRÖM J. The role of the mesangium in glomerular function[J]. Acta Physiol (Oxf), 2023, 239(2): e14045. DOI: 10.1111/apha.14045.
    [18] CHANG R L, DEEN W M, ROBERTSON C R, et al. Permselectivity of the glomerular capillary wall: Ⅲ. Restricted transport of polyanions[J]. Kidney Int, 1975, 8(4): 212-218.
    [19] HARVEY S J, JARAD G, CUNNINGHAM J, et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity[J]. Am J Pathol, 2007, 171(1): 139-152.
    [20] PARK M H, JO G, LEE B Y, et al. Rapid tumor targeting of renal-clearable ZW800-1 conjugate for efficient photothermal cancer therapy[J]. Biomedicines, 2021, 9(9): 1151. DOI: 10.3390/biomedicines9091151.
    [21] DU B J, JIANG X Y, HUANG Y Y, et al. Tailoring kidney transport of organic dyes with low-molecular-weight pegylation[J]. Bioconjug Chem, 2020, 31(2): 241-247.
    [22] SUN C J, YUAN Y, XU Z H, et al. Fine-tuned h-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe[J]. Bioconjug Chem, 2015, 26(2): 193-196.
    [23] YI S, HU Q, CHI Y, et al. Bright and renal-clearable Au nanoclusters with NIR-Ⅱ excitation and emission for high-resolution fluorescence imaging of kidney dysfunction[J]. ACS Materials Letters, 2023, 5(8): 2164-2173.
    [24] VERBEEK F P, VAN DER VORST J R, SCHAAFSMA B E, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience[J]. J Urol, 2013, 190(2): 574-579.
    [25] XUE D, WU D, LU Z, et al. Structural and functional NIR-Ⅱ fluorescence bioimaging in urinary system via clinically approved dye methylene blue[J]. Engineering, 2023, 22: 149-158.
    [26] LEE C M, LEE T K, KIM D I, et al. Optical imaging of absorption and distribution of RITC-SiO2 nanoparticles after oral administration[J]. Int J Nanomedicine, 2014, 9 Suppl 2(Suppl 2): 243-250.
    [27] YU T, GREISH K, MCGILL L D, et al. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold[J]. ACS Nano, 2012, 6(3): 2289-2301.
    [28] LEE Z, KAPLAN J, GIUSTO L, et al. Prevention of iatrogenic ureteral injuries during robotic gynecologic surgery: a review[J]. Am J Obstet Gynecol, 2016, 214(5): 566-571.
    [29] DE VALK K S, HANDGRAAF H J, DEKEN M M, et al. A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery[J]. Nat Commun, 2019, 10(1): 3118. DOI: 10.1038/s41467-019-11014-1.
    [30] DU J, LIU S J, ZHANG P F, et al. Highly stable and bright NIR-Ⅱ AIE dots for intraoperative identification of ureter[J]. ACS Appl Mater Interfaces, 2020, 12(7): 8040-8049.
    [31] TERANISHI K. A near-infrared fluorescent probe coated with β-cyclodextrin molecules for real-time imaging-guided intraoperative ureteral identification and diagnosis[J]. Mol Pharm, 2020, 17(7): 2672-2681.
    [32] KELLUM J A, RONCO C, BELLOMO R. Conceptual advances and evolving terminology in acute kidney disease[J]. Nat Rev Nephrol, 2021, 17(7): 493-502.
    [33] HUANG J G, XIE C, ZHANG X D, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction[J]. Angew Chem Int Ed Engl, 2019, 58(42): 15120-15127.
    [34] YU M X, ZHOU J C, DU B J, et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles[J]. Angew Chem Int Ed Engl, 2016, 55(8): 2787-2791.
    [35] FONTECHA-BARRIUSO M, LOPEZ-DIAZ A M, GUERRERO-MAUVECIN J, et al. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease[J]. Antioxidants (Basel), 2022, 11(7): 1356. DOI: 10.3390/antiox11071356.
    [36] HUANG J G, LI J C, LYU Y, et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury[J]. Nat Mater, 2019, 18(10): 1133-1143.
    [37] LYU Y, CHENG D, SU D D, et al. Visualization of oxidative injury in the mouse kidney using selective superoxide anion fluorescent probes[J]. Chem Sci, 2018, 9(39): 7606-7613.
    [38] BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol, 2015, 33(9): 941-951.
    [39] CAO C G, DENG S H, WANG B S, et al. Intraoperative near-infrared Ⅱ window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses[J]. Clin Transl Med, 2021, 11(10): e604. DOI: 10.1002/ctm2.604.
    [40] SIMONE G, TUDERTI G, ANCESCHI U, et al. "Ride the Green Light": indocyanine green-marked off-clamp robotic partial nephrectomy for totally endophytic renal masses[J]. Eur Urol, 2019, 75(6): 1008-1014.
    [41] TERANISHI K. Near-infrared fluorescence imaging of renal cell carcinoma with ASP5354 in a mouse model for intraoperative guidance[J]. Int J Mol Sci, 2022, 23(13): 7228. DOI: 10.3390/ijms23137228.
    [42] AN H W, HOU D Y, ZHENG R, et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma[J]. ACS Nano, 2020, 14(1): 927-936.
    [43] GUZZO T J, JIANG J, KEATING J, et al. Intraoperative molecular diagnostic imaging can identify renal cell carcinoma[J]. J Urol, 2016, 195(3): 748-755.
    [44] HUANG J G, JIANG Y Y, LI J C, et al. A renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer[J]. Angew Chem Int Ed Engl, 2020, 59(11): 4415-4420.
    [45] AAYUSH A, DARJI S, DHAWAN D, et al. Targeted elastin-like polypeptide fusion protein for near-infrared imaging of human and canine urothelial carcinoma[J]. Oncotarget, 2022, 13: 1004-1016.
    [46] HAO H F, WANG X Y, QIN Y, et al. Ex vivo near-infrared targeted imaging of human bladder carcinoma by ICG-anti-CD47[J]. Front Oncol, 2023, 13: 1083553. DOI: 10.3389/fonc.2023.1083553.
    [47] BAART V M, VAN DER HORST G, DEKEN M M, et al. A multimodal molecular imaging approach targeting urokinase plasminogen activator receptor for the diagnosis, resection and surveillance of urothelial cell carcinoma[J]. Eur J Cancer, 2021, 146: 11-20.
    [48] POLIKARPOV D, LIANG L, CARE A, et al. Functionalized upconversion nanoparticles for targeted labelling of bladder cancer cells[J]. Biomolecules, 2019, 9(12): 820. DOI: 10.3390/biom9120820.
    [49] GOLIJANIN J, AMIN A, MOSHNIKOVA A, et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proc Natl Acad Sci U S A, 2016, 113(42): 11829-11834.
    [50] CHEN F, MA K, ZHANG L, et al. Ultrasmall renally clearable silica nanoparticles target prostate cancer[J]. ACS Appl Mater Interfaces, 2019, 11(47): 43879-43887.
    [51] LVTJE S, RIJPKEMA M, FRANSSEN G M, et al. Dual-modality image-guided surgery of prostate cancer with a radiolabeled fluorescent anti-PSMA monoclonal antibody[J]. J Nucl Med, 2014, 55(6): 995-1001.
    [52] CHEN Y, CHATTERJEE S, LISOK A, et al. A PSMA-targeted theranostic agent for photodynamic therapy[J]. J Photochem Photobiol B, 2017, 167: 111-116.
  • 加载中
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 网络出版日期:  2025-03-27

目录

    /

    返回文章
    返回