[1] |
STEIN J H, FADEM S Z. The renal circulation[J]. JAMA, 1978, 239(13): 1308-1312.
|
[2] |
JOSHI G, KIM E Y, HANNA T N, et al. CT cystography for suspicion of traumatic urinary bladder injury: indications, technique, findings, and pitfalls in diagnosis: radiographics fundamentals | Online Presentation[J]. Radiographics, 2018, 38(1): 92-93. doi: 10.1148/rg.2018170125
|
[3] |
COWAN N C. CT urography for hematuria[J]. Nat Rev Urol, 2012, 9(4): 218-226.
|
[4] |
SILVERMAN S G, LEYENDECKER J R, AMIS E S J R. What is the current role of CT urography and MR urography in the evaluation of the urinary tract?[J]. Radiology, 2009, 250(2): 309-323.
|
[5] |
THOMAS J A. Optical imaging probes for biomolecules: an introductory perspective[J]. Chem Soc Rev, 2015, 44(14): 4494-4500.
|
[6] |
LI C Y, CHEN G C, ZHANG Y J, et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications[J]. J Am Chem Soc, 2020, 142(35): 14789-14804.
|
[7] |
DING B B, XIAO Y L, ZHOU H, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1 000 nm for biological imaging in the second near-infrared subwindow[J]. J Med Chem, 2019, 62(4): 2049-2059.
|
[8] |
HUANG Y, CHEN K, LIU L, et al. Single atom-engineered NIR-Ⅱ Gold clusters with ultrahigh brightness and stability for acute kidney injury[J]. Small, 2023, 19(30): e2300145. DOI: 10.1002/smll.202300145.
|
[9] |
FANG Q L, WANG J, WU S S, et al. NIR-induced improvement of catalytic activity and antibacterial performance over AuAg nanorods in Rambutan-like Fe3O4@AgAu@PDA magnetic nanospheres[J]. J Hazard Mater, 2023, 445: 130616. DOI: 10.1016/j.jhazmat.2022.130616.
|
[10] |
JIANG X Y, DU B J, TANG S H, et al. Photoacoustic imaging of nanoparticle transport in the kidneys at high temporal resolution[J]. Angew Chem Int Ed Engl, 2019, 58(18): 5994-6000.
|
[11] |
LI L T, CHEN H Z, SHI Y J, et al. Human-Body-Temperature triggerable phase transition of W-VO2@PEG nanoprobes with strong and switchable NIR-Ⅱ absorption for deep and contrast-enhanced photoacoustic imaging[J]. ACS Nano, 2022, 16(2): 2066-2076.
|
[12] |
HUANG J G, XIE C, ZHANG X D, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction[J]. Angew Chem Int Ed Engl, 2019, 58(42): 15120-15127.
|
[13] |
CHOI H S, LIU W H, MISRA P, et al. Renal clearance of quantum dots[J]. Nat Biotechnol, 2007, 25(10): 1165-1170.
|
[14] |
ZHOU C, LONG M, QIN Y P, et al. Luminescent gold nanoparticles with efficient renal clearance[J]. Angew Chem Int Ed Engl, 2011, 50(14): 3168-3172.
|
[15] |
DU B J, JIANG X Y, DAS A, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nat Nanotechnol, 2017, 12(11): 1096-1102.
|
[16] |
VENTUROLI D, RIPPE B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability[J]. Am J Physiol Renal Physiol, 2005, 288(4): F605-F613.
|
[17] |
BOI R, EBEFORS K, NYSTRÖM J. The role of the mesangium in glomerular function[J]. Acta Physiol (Oxf), 2023, 239(2): e14045. DOI: 10.1111/apha.14045.
|
[18] |
CHANG R L, DEEN W M, ROBERTSON C R, et al. Permselectivity of the glomerular capillary wall: Ⅲ. Restricted transport of polyanions[J]. Kidney Int, 1975, 8(4): 212-218.
|
[19] |
HARVEY S J, JARAD G, CUNNINGHAM J, et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity[J]. Am J Pathol, 2007, 171(1): 139-152.
|
[20] |
PARK M H, JO G, LEE B Y, et al. Rapid tumor targeting of renal-clearable ZW800-1 conjugate for efficient photothermal cancer therapy[J]. Biomedicines, 2021, 9(9): 1151. DOI: 10.3390/biomedicines9091151.
|
[21] |
DU B J, JIANG X Y, HUANG Y Y, et al. Tailoring kidney transport of organic dyes with low-molecular-weight pegylation[J]. Bioconjug Chem, 2020, 31(2): 241-247.
|
[22] |
SUN C J, YUAN Y, XU Z H, et al. Fine-tuned h-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe[J]. Bioconjug Chem, 2015, 26(2): 193-196.
|
[23] |
YI S, HU Q, CHI Y, et al. Bright and renal-clearable Au nanoclusters with NIR-Ⅱ excitation and emission for high-resolution fluorescence imaging of kidney dysfunction[J]. ACS Materials Letters, 2023, 5(8): 2164-2173.
|
[24] |
VERBEEK F P, VAN DER VORST J R, SCHAAFSMA B E, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience[J]. J Urol, 2013, 190(2): 574-579.
|
[25] |
XUE D, WU D, LU Z, et al. Structural and functional NIR-Ⅱ fluorescence bioimaging in urinary system via clinically approved dye methylene blue[J]. Engineering, 2023, 22: 149-158.
|
[26] |
LEE C M, LEE T K, KIM D I, et al. Optical imaging of absorption and distribution of RITC-SiO2 nanoparticles after oral administration[J]. Int J Nanomedicine, 2014, 9 Suppl 2(Suppl 2): 243-250.
|
[27] |
YU T, GREISH K, MCGILL L D, et al. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold[J]. ACS Nano, 2012, 6(3): 2289-2301.
|
[28] |
LEE Z, KAPLAN J, GIUSTO L, et al. Prevention of iatrogenic ureteral injuries during robotic gynecologic surgery: a review[J]. Am J Obstet Gynecol, 2016, 214(5): 566-571.
|
[29] |
DE VALK K S, HANDGRAAF H J, DEKEN M M, et al. A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery[J]. Nat Commun, 2019, 10(1): 3118. DOI: 10.1038/s41467-019-11014-1.
|
[30] |
DU J, LIU S J, ZHANG P F, et al. Highly stable and bright NIR-Ⅱ AIE dots for intraoperative identification of ureter[J]. ACS Appl Mater Interfaces, 2020, 12(7): 8040-8049.
|
[31] |
TERANISHI K. A near-infrared fluorescent probe coated with β-cyclodextrin molecules for real-time imaging-guided intraoperative ureteral identification and diagnosis[J]. Mol Pharm, 2020, 17(7): 2672-2681.
|
[32] |
KELLUM J A, RONCO C, BELLOMO R. Conceptual advances and evolving terminology in acute kidney disease[J]. Nat Rev Nephrol, 2021, 17(7): 493-502.
|
[33] |
HUANG J G, XIE C, ZHANG X D, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction[J]. Angew Chem Int Ed Engl, 2019, 58(42): 15120-15127.
|
[34] |
YU M X, ZHOU J C, DU B J, et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles[J]. Angew Chem Int Ed Engl, 2016, 55(8): 2787-2791.
|
[35] |
FONTECHA-BARRIUSO M, LOPEZ-DIAZ A M, GUERRERO-MAUVECIN J, et al. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease[J]. Antioxidants (Basel), 2022, 11(7): 1356. DOI: 10.3390/antiox11071356.
|
[36] |
HUANG J G, LI J C, LYU Y, et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury[J]. Nat Mater, 2019, 18(10): 1133-1143.
|
[37] |
LYU Y, CHENG D, SU D D, et al. Visualization of oxidative injury in the mouse kidney using selective superoxide anion fluorescent probes[J]. Chem Sci, 2018, 9(39): 7606-7613.
|
[38] |
BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol, 2015, 33(9): 941-951.
|
[39] |
CAO C G, DENG S H, WANG B S, et al. Intraoperative near-infrared Ⅱ window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses[J]. Clin Transl Med, 2021, 11(10): e604. DOI: 10.1002/ctm2.604.
|
[40] |
SIMONE G, TUDERTI G, ANCESCHI U, et al. "Ride the Green Light": indocyanine green-marked off-clamp robotic partial nephrectomy for totally endophytic renal masses[J]. Eur Urol, 2019, 75(6): 1008-1014.
|
[41] |
TERANISHI K. Near-infrared fluorescence imaging of renal cell carcinoma with ASP5354 in a mouse model for intraoperative guidance[J]. Int J Mol Sci, 2022, 23(13): 7228. DOI: 10.3390/ijms23137228.
|
[42] |
AN H W, HOU D Y, ZHENG R, et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma[J]. ACS Nano, 2020, 14(1): 927-936.
|
[43] |
GUZZO T J, JIANG J, KEATING J, et al. Intraoperative molecular diagnostic imaging can identify renal cell carcinoma[J]. J Urol, 2016, 195(3): 748-755.
|
[44] |
HUANG J G, JIANG Y Y, LI J C, et al. A renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer[J]. Angew Chem Int Ed Engl, 2020, 59(11): 4415-4420.
|
[45] |
AAYUSH A, DARJI S, DHAWAN D, et al. Targeted elastin-like polypeptide fusion protein for near-infrared imaging of human and canine urothelial carcinoma[J]. Oncotarget, 2022, 13: 1004-1016.
|
[46] |
HAO H F, WANG X Y, QIN Y, et al. Ex vivo near-infrared targeted imaging of human bladder carcinoma by ICG-anti-CD47[J]. Front Oncol, 2023, 13: 1083553. DOI: 10.3389/fonc.2023.1083553.
|
[47] |
BAART V M, VAN DER HORST G, DEKEN M M, et al. A multimodal molecular imaging approach targeting urokinase plasminogen activator receptor for the diagnosis, resection and surveillance of urothelial cell carcinoma[J]. Eur J Cancer, 2021, 146: 11-20.
|
[48] |
POLIKARPOV D, LIANG L, CARE A, et al. Functionalized upconversion nanoparticles for targeted labelling of bladder cancer cells[J]. Biomolecules, 2019, 9(12): 820. DOI: 10.3390/biom9120820.
|
[49] |
GOLIJANIN J, AMIN A, MOSHNIKOVA A, et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proc Natl Acad Sci U S A, 2016, 113(42): 11829-11834.
|
[50] |
CHEN F, MA K, ZHANG L, et al. Ultrasmall renally clearable silica nanoparticles target prostate cancer[J]. ACS Appl Mater Interfaces, 2019, 11(47): 43879-43887.
|
[51] |
LVTJE S, RIJPKEMA M, FRANSSEN G M, et al. Dual-modality image-guided surgery of prostate cancer with a radiolabeled fluorescent anti-PSMA monoclonal antibody[J]. J Nucl Med, 2014, 55(6): 995-1001.
|
[52] |
CHEN Y, CHATTERJEE S, LISOK A, et al. A PSMA-targeted theranostic agent for photodynamic therapy[J]. J Photochem Photobiol B, 2017, 167: 111-116.
|