[1] |
夏雪芬, 杨碎丽, 刘炯炯, 等. 基于老年综合评估的护理干预对老年帕金森病患者生活质量的影响[J]. 中华全科医学, 2024, 22(1): 163-167. doi: 10.16766/j.cnki.issn.1674-4152.003355XIA X F, YANG S L, LIU J J, et al. Effect of nursing intervention based on geriatric comprehensive assessmenton quality of life in elderly patients with Parkinson ' s disease[J]. Chinese Journal of General Practice, 2024, 22(1): 163-167. doi: 10.16766/j.cnki.issn.1674-4152.003355
|
[2] |
BANDRES-CIGA S, DIEZ-FAIREN M, KIM J J, et al. Genetics of Parkinson ' s disease: an introspection of its journey towards precision medicine[J]. Neurobiol Dis, 2020, 137: 104782. DOI: 10.1016/j.nbd.2020.104782.
|
[3] |
WILLIS A W, ROBERTS E, BECK J C, et al. Incidence of Parkinson disease in North America[J]. NPJ Parkinsons Dis, 2022, 8(1): 170. DOI: 10.1038/s41531-022-00410-y.
|
[4] |
TANG D, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
|
[5] |
FANG X, ARDEHALI H, MIN J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(1): 7-23.
|
[6] |
DAVID S, JHELUM P, RYAN F, et al. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders[J]. Antioxid Redox Signal, 2022, 37(1-3): 150-170.
|
[7] |
常宇宸, 李京波. 心肌梗死中铁死亡标志物研究进展[J]. 诊断学理论与实践, 2023, 22(2): 197-202.CHANG Y C, LI J B. Advances in biological markers of ferroptosis in myocardial infarction[J]. Diagnostic theory and practice, 2023, 22(2): 197-202.
|
[8] |
STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421.
|
[9] |
XU S, HE Y, LIN L, et al. The emerging role of ferroptosis in intestinal disease[J]. Cell Death Dis, 2021, 12(4): 289. DOI: 10.1038/s41419-021-03559-1.
|
[10] |
FU C, CAO N, ZENG S, et al. Role of mitochondria in the regulation of ferroptosis and disease[J]. Front Med(Lausanne), 2023, 10: 1301822. DOI: 10.3389/fmed.2023.1301822.
|
[11] |
ANGELOVA P R, CHOI M L, BEREZHNOV A V, et al. Correction: alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation[J]. Cell Death Differ, 2021, 28(5): 1755. DOI: 10.1038/s41418-020-00634-6.
|
[12] |
WISE R M, WAGENER A, FIETZEK U M, et al. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson ' s disease and neurodegeneration with brain iron accumulation disorders[J]. Neurobiol Dis, 2022, 175: 105920. DOI: 10.1016/j.nbd.2022.105920.
|
[13] |
AN Y, LI S, HUANG X, et al. The role of copper homeostasis in brain disease[J]. Int J Mol Sci, 2022, 23(22): 13850. DOI: 10.3390/ijms232213850.
|
[14] |
GU Q, LIU X, ZENG Q, et al. The protective role of cigarette smoking against Parkinson ' s disease via moderation of the interaction between iron deposition in the nigrostriatal pathway and clinical symptoms[J]. Quant Imaging Med Surg, 2022, 12(7): 3603-3624.
|
[15] |
MOCHIZUKI H, CHOONG C J, BABA K. Parkinson ' s disease and iron[J]. J Neural Transm(Vienna), 2020, 127(2): 181-187.
|
[16] |
RIEDERER P, NAGATSU T, YOUDIM M B H, et al. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson ' s disease[J]. J Neural Transm(Vienna), 2023, 130(5): 627-646.
|
[17] |
LEE J, HYUN D H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases[J]. Antioxidants(Basel), 2023, 12(4): 918. DOI: 10.3390/antiox12040918.
|
[18] |
BI M, DU X, JIAO Q, et al. α-synuclein regulates iron homeostasis via preventing Parkin-mediated DMT1 ubiquitylation in Parkinson ' s disease models[J]. ACS Chem Neurosci, 2020, 11(11): 1682-1691.
|
[19] |
郭兴, 胡明慧, 孙亚男, 等. 脂质在帕金森病发生中的作用及机制研究进展[J]. 新乡医学院学报, 2024, 41(4): 392-396.GUO X, HU M H, SUN Y N, et al. Research progress on the role and mechanism of lipids in the occurrence of Parkinson's disease[J]. Journal of Xinxiang Medical University, 2024, 41(4): 392-396.
|
[20] |
CERASUOLO M, DI MEO I, AURIEMMA M C, et al. Iron and ferroptosis more than a suspect: beyond the most common mechanisms of neurodegeneration for new therapeutic approaches to cognitive decline and dementia[J]. Int J Mol Sci, 2023, 24(11): 9637. DOI: 10.3390/ijms24119637.
|
[21] |
WU W, ZIEMANN M, HUYNH K, et al. Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice[J]. Theranostics, 2021, 11(18): 8993-9008.
|
[22] |
SMITS M A J, SCHOMAKERS B V, VAN WEEGHEL M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction[J]. Hum Reprod, 2023, 38(11): 2208-2220.
|
[23] |
ZHANG B, PAN C, FENG C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep, 2022, 27(1): 45-52.
|
[24] |
XU C, SUN S, JOHNSON T, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity[J]. Cell Rep, 2021, 35(11): 109235. DOI: 10.1016/j.celrep.2021.109235.
|
[25] |
ASANUMA M, MIYAZAKI I. Glutathione and related molecules in Parkinsonism[J]. Int J Mol Sci, 2021, 22(16): 8689. DOI: 10.3390/ijms22168689.
|
[26] |
VIKTORINOVA A. Future perspectives of oxytosis/ferroptosis research in neurodegeneration diseases[J]. Cell Mol Neurobiol, 2023, 43(6): 2761-2768.
|
[27] |
URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175-185.
|
[28] |
ZHANG Y, SWANDA R V, NIE L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1): 1589. DOI: 10.1038/s41467-021-21841-w.
|
[29] |
CAO Y, XIAO W, LIU S, et al. Ferroptosis: underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage[J]. Front Cell Neurosci, 2023, 17: 1080344. DOI: 10.3389/fncel.2023.1080344.
|
[30] |
GUTBIER S, KYRIAKOU S, SCHILDKNECHT S, et al. Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants[J]. Arch Toxicol, 2020, 94(9): 3105-3123.
|
[31] |
DEVOS D, LABREUCHE J, RASCOL O, et al. Trial of deferiprone in Parkinson ' s disease[J]. N Engl J Med, 2022, 387(22): 2045-2055.
|
[32] |
KAISER S, ZHANG L, MOLLENHAUER B, et al. A proteogenomic view of Parkinson ' s disease causality and heterogeneity[J]. NPJ Parkinsons Dis, 2023, 9(1): 24. DOI: 10.1038/s41531-023-00461-9.
|
[33] |
BOLSHAKOVA O I, BORISENKOVA A A, GOLOMIDOV I M, et al. Fullerenols prevent neuron death and reduce oxidative stress in drosophila Huntington ' s disease model[J]. Cells, 2022, 12(1): 170. DOI: 10.3390/cells12010170.
|
[34] |
SHI L, HUANG C, LUO Q, et al. Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson ' s disease through AKT/mTOR pathway[J]. Aging(Albany NY), 2020, 12(10): 9515-9533.
|
[35] |
SUN Y, HE L, WANG T, et al. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol Neurobiol, 2020, 57(11): 4628-4641.
|
[36] |
QIAO W, ZHA M, YANG Y, et al. Pd(17)Se(15) alloy on Se spheres with a high anti-poisoning ability for alcohol fuel electrooxidation[J]. Chem Commun(Camb), 2022, 58(76): 10651-10654.
|
[37] |
LA ROSA P, PETRILLO S, TURCHI R, et al. The Nrf2 induction prevents ferroptosis in Friedreich ' s ataxia[J]. Redox Biol, 2021, 38: 101791. DOI: 10.1016/j.redox.2020.101791.
|
[38] |
CAI B, ZHONG L, LIU Y, et al. δ-opioid receptor activation inhibits ferroptosis by activating the Nrf2 pathway in MPTP-induced Parkinson disease models[J]. Evid Based Complement Alternat Med, 2023, 2023: 4130937. DOI: 10.1155/2023/4130937.
|
[39] |
YANG M, TSUI M G, TSANG J K W, et al. Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis[J]. Cell Death Dis, 2022, 13(5): 468. DOI: 10.1038/s41419-022-04924-4.
|
[40] |
李福军, 姜涛, 郭力甲, 等. Sestrin 2通过Nrf2/xCT途径减轻七氟醚诱导的HT22细胞铁死亡研究[J]. 中华全科医学, 2021, 19(6): 917-920, 1068. doi: 10.16766/j.cnki.issn.1674-4152.001949LI F J, JIANG T, GUO L J, et al. Sestrin 2 extenuates neuronal ferroptosis induced by sevoflurane through the Nrf2/xCT pathway[J]. Chinese Journal of General Practice, 2021, 19(6): 917-920, 1068. doi: 10.16766/j.cnki.issn.1674-4152.001949
|
[41] |
PRADHAN N, SINGH C, SINGH A. Coenzyme Q10 a mitochondrial restorer for various brain disorders[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(11): 2197-2222.
|
[42] |
MISHIMA E, ITO J, WU Z, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature, 2022, 608(7924): 778-783.
|