留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁死亡在帕金森病中的研究进展

张春莉 李红燕

张春莉, 李红燕. 铁死亡在帕金森病中的研究进展[J]. 中华全科医学, 2025, 23(2): 292-295. doi: 10.16766/j.cnki.issn.1674-4152.003888
引用本文: 张春莉, 李红燕. 铁死亡在帕金森病中的研究进展[J]. 中华全科医学, 2025, 23(2): 292-295. doi: 10.16766/j.cnki.issn.1674-4152.003888
ZHANG Chunli, LI Hongyan. Research progress on iron death in Parkinson ' s disease[J]. Chinese Journal of General Practice, 2025, 23(2): 292-295. doi: 10.16766/j.cnki.issn.1674-4152.003888
Citation: ZHANG Chunli, LI Hongyan. Research progress on iron death in Parkinson ' s disease[J]. Chinese Journal of General Practice, 2025, 23(2): 292-295. doi: 10.16766/j.cnki.issn.1674-4152.003888

铁死亡在帕金森病中的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.003888
基金项目: 

国家自然科学基金地区科学基金项目 31560270

详细信息
    通讯作者:

    李红燕,E-mail:lhyxxy_008@126.com

  • 中图分类号: R742.5

Research progress on iron death in Parkinson ' s disease

  • 摘要: 帕金森病(PD)是一种年龄依赖性、迟发性神经退行性疾病,主要以典型的运动症状及非运动症状为特征。目前PD的病因、机制尚不完全清楚,但除了传统观点认为的黑质致密部多巴胺能神经元的退化,以及其细胞内α-突触核蛋白异常沉积外,人们逐渐发现多种新型细胞死亡方式参与了PD的发展过程,其中包括细胞焦亡、细胞自噬和细胞铁死亡。细胞铁死亡作为一种新型程序性细胞死亡方式,是由脂质过氧化过度驱动和铁依赖性调节,其与PD在病理生理学上有共同特点。细胞铁死亡主要是由铁过度沉积、氨基酸代谢失衡、脂质过氧化和线粒体损伤等导致神经细胞毒性,最终导致神经元细胞死亡和丧失。因此,铁螯合剂、铁死亡抑制剂和亲脂抗氧化剂等一些相关药物可以通过抑制金属离子反应,减少铁代谢失衡和氧化应激损伤来抑制细胞铁死亡,从而干预PD的发病和进展。基于此,本文针对铁死亡在PD中的潜在致病机制及选择性抑制细胞铁死亡在缓解和治疗PD中的分子机理进行总结,为进一步开发靶向抑制铁死亡的干预和治疗PD奠定了基础。同时研究细胞铁死亡的机制可以为未来的药物研发提供新的思路和方向,以帮助改善PD患者的生活质量,延缓疾病的进展,为PD的治疗和管理提供更多的可能性。

     

  • [1] 夏雪芬, 杨碎丽, 刘炯炯, 等. 基于老年综合评估的护理干预对老年帕金森病患者生活质量的影响[J]. 中华全科医学, 2024, 22(1): 163-167. doi: 10.16766/j.cnki.issn.1674-4152.003355

    XIA X F, YANG S L, LIU J J, et al. Effect of nursing intervention based on geriatric comprehensive assessmenton quality of life in elderly patients with Parkinson ' s disease[J]. Chinese Journal of General Practice, 2024, 22(1): 163-167. doi: 10.16766/j.cnki.issn.1674-4152.003355
    [2] BANDRES-CIGA S, DIEZ-FAIREN M, KIM J J, et al. Genetics of Parkinson ' s disease: an introspection of its journey towards precision medicine[J]. Neurobiol Dis, 2020, 137: 104782. DOI: 10.1016/j.nbd.2020.104782.
    [3] WILLIS A W, ROBERTS E, BECK J C, et al. Incidence of Parkinson disease in North America[J]. NPJ Parkinsons Dis, 2022, 8(1): 170. DOI: 10.1038/s41531-022-00410-y.
    [4] TANG D, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
    [5] FANG X, ARDEHALI H, MIN J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(1): 7-23.
    [6] DAVID S, JHELUM P, RYAN F, et al. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders[J]. Antioxid Redox Signal, 2022, 37(1-3): 150-170.
    [7] 常宇宸, 李京波. 心肌梗死中铁死亡标志物研究进展[J]. 诊断学理论与实践, 2023, 22(2): 197-202.

    CHANG Y C, LI J B. Advances in biological markers of ferroptosis in myocardial infarction[J]. Diagnostic theory and practice, 2023, 22(2): 197-202.
    [8] STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421.
    [9] XU S, HE Y, LIN L, et al. The emerging role of ferroptosis in intestinal disease[J]. Cell Death Dis, 2021, 12(4): 289. DOI: 10.1038/s41419-021-03559-1.
    [10] FU C, CAO N, ZENG S, et al. Role of mitochondria in the regulation of ferroptosis and disease[J]. Front Med(Lausanne), 2023, 10: 1301822. DOI: 10.3389/fmed.2023.1301822.
    [11] ANGELOVA P R, CHOI M L, BEREZHNOV A V, et al. Correction: alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation[J]. Cell Death Differ, 2021, 28(5): 1755. DOI: 10.1038/s41418-020-00634-6.
    [12] WISE R M, WAGENER A, FIETZEK U M, et al. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson ' s disease and neurodegeneration with brain iron accumulation disorders[J]. Neurobiol Dis, 2022, 175: 105920. DOI: 10.1016/j.nbd.2022.105920.
    [13] AN Y, LI S, HUANG X, et al. The role of copper homeostasis in brain disease[J]. Int J Mol Sci, 2022, 23(22): 13850. DOI: 10.3390/ijms232213850.
    [14] GU Q, LIU X, ZENG Q, et al. The protective role of cigarette smoking against Parkinson ' s disease via moderation of the interaction between iron deposition in the nigrostriatal pathway and clinical symptoms[J]. Quant Imaging Med Surg, 2022, 12(7): 3603-3624.
    [15] MOCHIZUKI H, CHOONG C J, BABA K. Parkinson ' s disease and iron[J]. J Neural Transm(Vienna), 2020, 127(2): 181-187.
    [16] RIEDERER P, NAGATSU T, YOUDIM M B H, et al. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson ' s disease[J]. J Neural Transm(Vienna), 2023, 130(5): 627-646.
    [17] LEE J, HYUN D H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases[J]. Antioxidants(Basel), 2023, 12(4): 918. DOI: 10.3390/antiox12040918.
    [18] BI M, DU X, JIAO Q, et al. α-synuclein regulates iron homeostasis via preventing Parkin-mediated DMT1 ubiquitylation in Parkinson ' s disease models[J]. ACS Chem Neurosci, 2020, 11(11): 1682-1691.
    [19] 郭兴, 胡明慧, 孙亚男, 等. 脂质在帕金森病发生中的作用及机制研究进展[J]. 新乡医学院学报, 2024, 41(4): 392-396.

    GUO X, HU M H, SUN Y N, et al. Research progress on the role and mechanism of lipids in the occurrence of Parkinson's disease[J]. Journal of Xinxiang Medical University, 2024, 41(4): 392-396.
    [20] CERASUOLO M, DI MEO I, AURIEMMA M C, et al. Iron and ferroptosis more than a suspect: beyond the most common mechanisms of neurodegeneration for new therapeutic approaches to cognitive decline and dementia[J]. Int J Mol Sci, 2023, 24(11): 9637. DOI: 10.3390/ijms24119637.
    [21] WU W, ZIEMANN M, HUYNH K, et al. Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice[J]. Theranostics, 2021, 11(18): 8993-9008.
    [22] SMITS M A J, SCHOMAKERS B V, VAN WEEGHEL M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction[J]. Hum Reprod, 2023, 38(11): 2208-2220.
    [23] ZHANG B, PAN C, FENG C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep, 2022, 27(1): 45-52.
    [24] XU C, SUN S, JOHNSON T, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity[J]. Cell Rep, 2021, 35(11): 109235. DOI: 10.1016/j.celrep.2021.109235.
    [25] ASANUMA M, MIYAZAKI I. Glutathione and related molecules in Parkinsonism[J]. Int J Mol Sci, 2021, 22(16): 8689. DOI: 10.3390/ijms22168689.
    [26] VIKTORINOVA A. Future perspectives of oxytosis/ferroptosis research in neurodegeneration diseases[J]. Cell Mol Neurobiol, 2023, 43(6): 2761-2768.
    [27] URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175-185.
    [28] ZHANG Y, SWANDA R V, NIE L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1): 1589. DOI: 10.1038/s41467-021-21841-w.
    [29] CAO Y, XIAO W, LIU S, et al. Ferroptosis: underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage[J]. Front Cell Neurosci, 2023, 17: 1080344. DOI: 10.3389/fncel.2023.1080344.
    [30] GUTBIER S, KYRIAKOU S, SCHILDKNECHT S, et al. Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants[J]. Arch Toxicol, 2020, 94(9): 3105-3123.
    [31] DEVOS D, LABREUCHE J, RASCOL O, et al. Trial of deferiprone in Parkinson ' s disease[J]. N Engl J Med, 2022, 387(22): 2045-2055.
    [32] KAISER S, ZHANG L, MOLLENHAUER B, et al. A proteogenomic view of Parkinson ' s disease causality and heterogeneity[J]. NPJ Parkinsons Dis, 2023, 9(1): 24. DOI: 10.1038/s41531-023-00461-9.
    [33] BOLSHAKOVA O I, BORISENKOVA A A, GOLOMIDOV I M, et al. Fullerenols prevent neuron death and reduce oxidative stress in drosophila Huntington ' s disease model[J]. Cells, 2022, 12(1): 170. DOI: 10.3390/cells12010170.
    [34] SHI L, HUANG C, LUO Q, et al. Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson ' s disease through AKT/mTOR pathway[J]. Aging(Albany NY), 2020, 12(10): 9515-9533.
    [35] SUN Y, HE L, WANG T, et al. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol Neurobiol, 2020, 57(11): 4628-4641.
    [36] QIAO W, ZHA M, YANG Y, et al. Pd(17)Se(15) alloy on Se spheres with a high anti-poisoning ability for alcohol fuel electrooxidation[J]. Chem Commun(Camb), 2022, 58(76): 10651-10654.
    [37] LA ROSA P, PETRILLO S, TURCHI R, et al. The Nrf2 induction prevents ferroptosis in Friedreich ' s ataxia[J]. Redox Biol, 2021, 38: 101791. DOI: 10.1016/j.redox.2020.101791.
    [38] CAI B, ZHONG L, LIU Y, et al. δ-opioid receptor activation inhibits ferroptosis by activating the Nrf2 pathway in MPTP-induced Parkinson disease models[J]. Evid Based Complement Alternat Med, 2023, 2023: 4130937. DOI: 10.1155/2023/4130937.
    [39] YANG M, TSUI M G, TSANG J K W, et al. Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis[J]. Cell Death Dis, 2022, 13(5): 468. DOI: 10.1038/s41419-022-04924-4.
    [40] 李福军, 姜涛, 郭力甲, 等. Sestrin 2通过Nrf2/xCT途径减轻七氟醚诱导的HT22细胞铁死亡研究[J]. 中华全科医学, 2021, 19(6): 917-920, 1068. doi: 10.16766/j.cnki.issn.1674-4152.001949

    LI F J, JIANG T, GUO L J, et al. Sestrin 2 extenuates neuronal ferroptosis induced by sevoflurane through the Nrf2/xCT pathway[J]. Chinese Journal of General Practice, 2021, 19(6): 917-920, 1068. doi: 10.16766/j.cnki.issn.1674-4152.001949
    [41] PRADHAN N, SINGH C, SINGH A. Coenzyme Q10 a mitochondrial restorer for various brain disorders[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(11): 2197-2222.
    [42] MISHIMA E, ITO J, WU Z, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature, 2022, 608(7924): 778-783.
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 网络出版日期:  2025-03-27

目录

    /

    返回文章
    返回