Construction and preliminary validation of a nomogram model for predicting the risk of postpartum depression in gestational diabetes mellitus patients
-
摘要:
目的 构建妊娠糖尿病(GDM)孕妇产后抑郁(PPD)发生风险的预测列线图模型,并对其预测效能进行初步验证。 方法 回顾性纳入南通大学附属南通妇幼保健院2021年1月—2023年12月收治的318例GDM孕妇作为研究对象,对孕妇于分娩后6周采用爱丁堡产后抑郁量表(EPDS)进行评估,根据评估结果将患者分为PPD组76例(23.9%)和非PPD组242例(76.1%)。收集2组人口学资料、妊娠期临床特征、血糖指标、并发症发生情况等。采用多因素logistic回归分析筛选PPD发生的独立危险因素,并基于回归结果构建列线图模型。采用ROC曲线和校准曲线对模型的区分度和校准度进行评价,同时绘制临床决策曲线。 结果 多因素logistic回归分析显示,孕前BMI、妊娠期体重增长量、独生子女、家庭人均月收入、空腹血糖、餐后2小时血糖以及妊娠期并发症发生均是GDM孕妇PPD发生的独立影响因素(P<0.05)。基于上述变量构建列线图模型,其ROC曲线下面积为0.958(95% CI: 0.893~0.989),模型具有良好的区分度;模型的校准度良好,预测值与实际观测值基本一致(Hosmer & Lemeshow χ2=5.399,P=0.714);临床决策曲线结果显示,利用该模型预测GDM患者发生PPD的风险>0.3时,及时针对患者临床特点进行干预,可以获得较高的净获益。 结论 本研究构建的GDM孕妇PPD发生风险预测列线图模型简单易用,预测效能良好,可为临床早期识别和干预GDM孕妇PPD提供参考依据。 Abstract:Objective To construct a nomogram model for predicting the risk of postpartum depression (PPD) in women with gestational diabetes mellitus (GDM) and to preliminarily validate its predictive efficacy. Methods A total of 318 GDM patients admitted to Nantong Maternal and Child Health Care Hospital from January 2021 to December 2023 were retrospectively enrolled in this study. Six weeks after delivery, the Edinburgh postnatal depression scale (EPDS) was used to assess PPD, and the patients were divided into a PPD group (n=76, 23.9%) and a non-PPD group (n=242, 76.1%). Demographic characteristics, gestational clinical features, blood glucose levels, and complications were collected. Independent risk factors for PPD were screened by multivariate logistic regression analysis, and a nomogram model was constructed based on the regression results. The discrimination and calibration of the model were evaluated using the receiver operating characteristic (ROC) curve and calibration curve, respectively. A clinical decision curve was also plotted. Results Multivariate logistic regression analysis showed that pre-pregnancy BMI, gestational weight gain, being an only child, average monthly family income, fasting blood glucose, 2-hour postprandial blood glucose, and the occurrence of gestational complications were independent risk factors for PPD in GDM patients (P < 0.05). The nomogram model based on these variables had an area under the ROC curve of 0.958 (95% CI: 0.893-0.989), indicating good discrimination. The model also showed good calibration, with the predicted values being consistent with the actual observed values (Hosmer & Lemeshow χ2=5.399, P=0.714). The clinical decision curve showed that when the risk of PPD in GDM patients predicted by this model was >0.3, timely intervention based on the patient's clinical characteristics could achieve higher net benefits. Conclusion The nomogram model for predicting the risk of PPD in GDM patients constructed in this study is simple, easy to use, and has good predictive efficacy. It can provide a reference for the early identification and intervention of PPD in GDM patients in clinical practice. -
Key words:
- Gestational diabetes mellitus /
- Postpartum depression /
- Nomogram /
- Risk prediction /
- Model construction
-
表 1 2组GDM孕妇基本情况比较
Table 1. Comparison of baseline characteristics between two groups of pregnant women with GDM
项目 PPD组(n=76) 非PPD组(n=242) 统计量 P值 年龄(x±s,岁) 31.5±4.8 31.0±4.4 0.845a 0.398 文化程度[例(%)] 0.058b 0.954 初中及以下 9(11.8) 25(10.3) 高中/中专 22(28.9) 76(31.4) 大专 27(35.5) 82(33.9) 本科及以上 18(23.7) 59(24.4) 职业[例(%)] 0.220c 0.974 企业职工 29(38.2) 90(37.2) 事业单位人员 19(25.0) 67(27.7) 自由职业者 14(18.4) 43(17.8) 无业 14(18.4) 42(17.3) 家庭人均月收入[例(%)] 3.135b <0.001 <3 000元 31(40.8) 45(18.6) 3 000~5 000元 29(38.2) 128(52.9) >5 000元 16(21.0) 69(28.5) 居住地[例(%)] 0.208c 0.648 城市 50(65.8) 166(68.6) 农村 26(34.2) 76(31.4) 独生子女[例(%)] 16.530c <0.001 是 38(50.0) 61(25.2) 否 38(50.0) 181(74.8) 孕次[M(P25, P75,次] 2(1, 3) 2(1, 2) 0.202b 0.840 产次[M(P25, P75),次] 1(1, 2) 1(1, 2) 0.748b 0.454 注:a为t值,b为Z值,c为χ2值。 表 2 2组GDM孕妇妊娠期及分娩情况比较
Table 2. Comparison of conditions during Pregnancy and delivery between the two groups of women with GDM
项目 PPD组(n=76) 非PPD组(n=242) 统计量 P值 孕前BMI(x±s) 26.13±3.51 24.87±3.04 3.034a 0.003 妊娠期体重增长(x±s,kg) 15.24±4.38 14.05±3.87 2.264a 0.024 GDM诊断孕周(x±s,周) 29.31±4.92 28.25±4.68 1.701a 0.090 FBG(x±s,mmol/L) 6.61±0.89 5.29±0.72 13.143a <0.001 2hPG(x±s,mmol/L) 7.48±1.17 7.01±1.03 3.357a <0.001 妊娠期并发症发生[例(%)] 14(18.4) 17(7.0) 8.511b 0.003 分娩方式[例(%)] 2.077b 0.149 阴道分娩 42(55.3) 156(64.5) 剖宫产 34(44.7) 86(35.5) 新生儿出生体重(x±s,g) 3 245.87±456.21 3 187.65±421.98 1.029a 0.304 新生儿Apgar评分(x±s,分) 8.89±0.98 8.95±0.76 0.558a 0.577 注:a为t值,b为χ2值。 表 3 GDM孕妇PPD影响因素的logistic回归分析
Table 3. Logistic regression analysis of influencing factors for PPD in pregnant women with GDM
变量 B SE Waldχ2 P值 OR值 95% CI 孕前BMI 0.379 0.121 9.812 0.002 1.461 1.187~1.801 妊娠期体重增长 0.715 0.242 8.725 0.003 2.045 1.332~3.142 FBG 1.021 0.315 10.421 0.001 2.776 1.503~5.127 2hPG 1.287 0.279 21.139 <0.001 3.625 2.258~5.819 妊娠期并发症 1.982 0.697 8.086 0.004 7.257 1.851~28.449 家庭人均月收入<3 000元 0.853 0.285 8.974 0.003 2.346 1.375~4.008 独生子女 0.665 0.212 9.795 0.002 1.945 1.269~2.987 -
[1] SWEETING A, WONG J, MURPHY H R, et al. A clinical update on gestational diabetes mellitus[J]. Endocr Rev, 2022, 43(5): 763-793. doi: 10.1210/endrev/bnac003 [2] KROSKA E B, STOWE Z N. Postpartum depression: identification and treatment in the clinic setting[J]. Obstet Gynecol Clin North Am, 2020, 47(3): 409-419. doi: 10.1016/j.ogc.2020.05.001 [3] SURYAWANSHI O, PAJAI S. A comprehensive review on postpartum depression[J]. Cureus, 2022, 14(12): e32745. DOI: 10.7759/cureus.32745. [4] OLIVEIRA T A, LUZETTI G, ROSALÉM M, et al. Screening of perinatal depression using the Edinburgh Postpartum Depression Scale[J]. Rev Bras Ginecol Obstet, 2022, 44(5): 452-457. doi: 10.1055/s-0042-1743095 [5] SINGH A K, PALEPU S, SAHARIA G K, et al. Association between gestational diabetes mellitus and postpartum depression among women in Eastern India: a cohort study[J]. Indian J Community Med, 2023, 48(2): 351-356. doi: 10.4103/ijcm.ijcm_759_22 [6] 中华医学会妇产科学分会产科学组, 中华医学会围产医学分会, 中国妇幼保健协会妊娠合并糖尿病专业委员会. 妊娠期高血糖诊治指南(2022)[第一部分] [J]. 中华妇产科杂志, 2022, 57(1): 3-12.Chinese Medical Association Obstetrics and Gynecology Branch, Chinese Medical Association Perinatal Medicine branch, China Maternal and Child Health Association pregnancy and diabetes professional Committee. Guideline of diagnosis and treatment of hyperglycemia in pregnancy(2022)[Part one] [J]. Chinese Journal of Obstetrics and Gynecology, 2022, 57(1): 3-12. [7] STEFANA A, MIRABELLA F, GIGANTESCO A, et al. The screening accuracy of the Edinburgh Postnatal Depression Scale (EPDS) to detect perinatal depression with and without the self-harm item in pregnant and postpartum women[J]. J Psychosom Obstet Gynaecol, 2024, 45(1): 2404967. DOI: 10.1080/0167482X.2024.2404967. [8] PAPADOPOULOU S K, PAVLIDOU E, DAKANALIS A, et al. Postpartum depression is associated with maternal sociodemographic and anthropometric characteristics, perinatal outcomes, breastfeeding practices, and mediterranean diet adherence[J]. Nutrients, 2023, 15(17): 3853. DOI: 10.3390/nu15173853. [9] HOWARD K, MAPLES J M, TINIUS R A. Modifiable maternal factors and their relationship to postpartum depression[J]. Int J Environ Res Public Health, 2022, 19(19): 12393. DOI: 10.3390/ijerph191912393. [10] 赵明喆, 魏镜, 段艳平, 等. 妊娠期糖尿病与产后抑郁发作的相关性[J]. 中国医学科学院学报, 2022, 44(3): 422-427.ZHAO M Z, WEI J, DUAN Y P, et al. Association between gestational diabetes mellitus and postpartum depressive episode[J]. Acta Academiae Medicinae Sinicae, 2022, 44(3): 422-427. [11] 林苗, 周平. 妊娠期糖尿病孕妇产后高血糖的危险因素分析[J]. 中华全科医学, 2022, 20(8): 1350-1352, 1356. doi: 10.16766/j.cnki.issn.1674-4152.002594LIN M, ZHOU P. Risk factors of postpartum hyperglycaemia in pregnant women with gestational diabetes mellitus[J]. Chinese Journal of General Practice, 2022, 20(8): 1350-1352, 1356. doi: 10.16766/j.cnki.issn.1674-4152.002594 [12] ZHAO R L, ZHOU Y L, SHI H X, et al. Effect of gestational diabetes on postpartum depression-like behavior in rats and its mechanism[J]. Nutrients, 2022, 14(6): 1229. DOI: 10.3390/nu14061229. [13] MINSCHART C, DE WEERDT K, ELEGEERT A, et al. Antenatal depression and risk of gestational diabetes, adverse pregnancy outcomes, and postpartum quality of life[J]. J Clin Endocrinol Metab, 2021, 106(8): e3110-e3124. DOI: 10.1210/clinem/dgab156. [14] 沈卫英, 陆爱芬, 袁国芳, 等. 高龄产妇产后抑郁的影响因素分析及预测模型构建与验证[J]. 中国现代医生, 2023, 61(20): 44-48.SHEN W Y, LU A F, YUAN G F, et al. Analysis of the influencing factors of postpartum depression in elderly parturient and construction and validation of prediction model[J]. China Modern Doctor, 2023, 61(20): 44-48. [15] YAP P, PAPACHRISTOU NADAL I, RYSINOVA V, et al. Study protocol on risk factors for the diagnosis of gestational diabetes mellitus in different trimesters and their relation to maternal and neonatal outcomes (GDM-RIDMAN)[J]. BMJ Open, 2022, 12(7): e052554. DOI: 10.1136/bmjopen-2021-052554. [16] LI H L, LI H X, WANG J, et al. Effectiveness of multidisciplinary intervention for gestational diabetes mellitus[J]. J Obstet Gynaecol Res, 2023, 49(3): 863-869. doi: 10.1111/jog.15519 [17] HOFHEIMER J A, MCGOWAN E C, SMITH L M, et al. Risk factors for postpartum depression and severe distress among mothers of very preterm infants at NICU discharge[J]. Am J Perinatol, 2024, 41(10): 1396-1408. [18] ZHANG Y, RAZZA R. Father involvement, couple relationship quality, and maternal Postpartum Depression: the role of ethnicity among low-income families[J]. Matern Child Health J, 2022, 26(7): 1424-1433. [19] JIN Y Q, WU C K, CHEN W L, et al. Gestational diabetes and risk of perinatal depression in low-and middle-income countries: a meta-analysis[J]. Front Psychiatry, 2024, 15: 1331415. DOI: 10.3389/fpsyt.2024.1331415. [20] SAMPSON M, YU M, MAULDIN R, et al. Home visits for postpartum depression intervention among low-income latinas: results from the PST4PPD project[J]. Soc Work Public Health, 2024, 39(2): 141-155. [21] 李顺. 经产妇产后抑郁现状调查与影响因素分析[D]. 苏州: 苏州大学, 2021.LI S. Investigation and analysis of influencing factors of postpartum depression in multipara[D]. Suzhou: Soochow University, 2021. -