Differential expression of circular RNAs in the plasma of premature infants with retinopathy
-
摘要:
目的 分析早产儿视网膜病变(ROP)患儿血浆中环状RNA(circRNA)的表达谱变化。 方法 选取2023年1—8月于宁波大学附属妇女儿童医院住院治疗的ROP患儿3例为ROP组,同期无ROP患儿3例为对照组。采用高通量测序技术检测并筛选出血浆中差异表达的circRNA,应用生物信息学进行基因本体论(GO)注释、京都基因和基因组百科全书(KEGG)分析。利用在线数据库预测circRNA可能靶向的微小RNA(miRNA)。 结果 与对照组比较,ROP组患者血浆中共有108个circRNA呈显著差异性表达(P<0.05,差异倍数≥1),包括41个表达上调和67个表达下调的circRNA。生物信息学分析发现,质子转运ATP合酶、细胞代谢等通路在ROP的发生发展中作用较大。应用miRanda和psRobot软件预测circRNA与miRNA差异表达的关系,绘制circRNA-miRNA调控网络图。 结论 ROP组与对照组中circRNA存在差异表达。这些circRNA可能参与ROP的发生、发展过程,有可能成为ROP的新型诊断和治疗的潜在分子标志物。 Abstract:Objective This study aims to analyze the expression profile changes of circular RNA (circRNA) in the plasma of children with retinopathy of prematurity (ROP). Methods Three children with ROP hospitalized at Women and Children's Hospital of Ningbo University from January 2023 to August 2023 were selected as the ROP group, while three children without ROP during the same period were selected as the control group. High-throughput sequencing technology was used to detect and screen for differentially expressed circRNAs in hemorrhagic plasma, followed by bioinformatic analysis including gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Online databases were employed to predict the potential target microRNAs (miRNAs) of circRNA. Results Compared with the control group, a total of 108 circRNAs were significantly differentially expressed in the plasma of patients in the ROP group (P<0.05, fold change≥1), with 41 upregulated and 67 downregulated circRNAs. Bioinformatics analysis revealed that pathways such as proton-transporting ATP synthase and cellular metabolism play important roles in the occurrence and development of ROP. The relationship between differentially expressed circRNA and miRNA was predicted using miRanda and psRobot software, and a circRNA-miRNA regulatory network diagram was constructed. Conclusion Differential expression of circRNA exists between the ROP group and the control group, suggesting their potential involvement in the occurrence and development of ROP, or as novel molecular markers for diagnosis and treatment of ROP. -
表 1 ROP组与正常对照组差异表达的前10位circRNA
Table 1. The top 10 differentially expressed circRNAs between ROP group and normal control group
circRNA 表达
情况log2倍数
变化差异
倍数P值 hsacirc_023006 高 1.539 898 442 2.907 740 33 0.005 217 30 hsacirc_018939 高 2.822 699 769 7.074 851 02 0.005 511 44 hsacirc_022005 高 1.645 302 529 3.128 134 46 0.005 904 15 hsacirc_032202 高 Inf Inf 0.005 937 40 hsacirc_039472 高 2.139 503 168 4.406 102 83 0.006 225 46 hsacirc_028841 高 2.443 802 954 5.440 740 25 0.006 307 36 hsacirc_005342 高 3.811 709 842 14.042 324 2 0.006 695 37 hsacirc_014746 高 2.874 289 008 7.332 417 87 0.007 831 36 hsacirc_020683 高 2.690 666 771 6.456 117 21 0.009 795 87 hsacirc_023176 高 1.882 270 457 3.686 547 78 0.010 698 29 hsacirc_000912 低 -Inf 0 0.000 015 10 hsacirc_023530 低 -1.450 429 972 0.365 912 35 0.000 137 53 hsacirc_015864 低 -1.381 069 717 0.383 934 01 0.000 240 20 hsacirc_034631 低 -3.377 044 657 0.096 251 66 0.000 649 55 hsacirc_018196 低 -2.856 604 033 0.138 062 74 0.000 821 47 hsacirc_009338 低 -1.315 048 131 0.401 912 08 0.001 033 38 hsacirc_020848 低 -1.442 505 622 0.367 927 74 0.002 032 14 hsacirc_007605 低 -Inf 0 0.002 250 88 hsacirc_035263 低 -4.510 997 934 0.043 858 55 0.003 878 46 hsacirc_047998 低 -4.307 990 44 0.050 485 38 0.004 055 68 注:Inf 表示无穷大,-Inf 表示无穷小。 表 2 差异表达的circRNA与miRNA结合位点的预测结果
Table 2. Prediction results of differentially expressed circRNA and miRNA binding sites
表达趋势 circRNAs 数量 前5位miRNAs 上调 hsacirc_023006 64 hsa-miR-23a-3p, hsa-miR-103a-2-5p,hsa-miR-103a-1-5p, hsa-miR-214-3p,hsa-miR-23b-3p hsacirc_018939 101 hsa-let-7a-3p, hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-miR-19a-3p, hsa-miR-19b-3p hsacirc_022005 1 414 hsa-let-7a-3p, hsa-let-7a-2-3p,hsa-let-7b-3p, hsa-let-7c-3p,hsa-let-7f-1-3p hsacirc_032202 75 hsa-miR-29a-3p, hsa-miR-29b-3p,hsa-miR-103a-2-5p, hsa-miR-103a-1-5p, hsa-miR-196a-3p hsacirc_039472 227 hsa-miR-22-5p, hsa-miR-106a-3p,hsa-miR-16-2-3p, hsa-miR-34a-5p,hsa-miR-211-3p 下调 hsacirc_000912 2 513 hsa-let-7a-5p, hsa-let-7a-3p,hsa-let-7a-2-3p, hsa-let-7b-5p,hsa-let-7b-3p hsacirc_023530 198 hsa-let-7c-3p, hsa-miR-20a-3p,hsa-miR-22-5p, hsa-miR-23a-5p,hsa-miR-23a-3p hsacirc_015864 50 hsa-miR-214-3p, hsa-miR-145-3p,hsa-miR-370-5p, hsa-miR-431-3p,hsa-miR-485-3p hsacirc_034631 40 hsa-miR-196a-5p, hsa-miR-128-1-5p,hsa-miR-135a-5p, hsa-miR-128-2-5p,hsa-miR-135b-5p hsacirc_018196 654 hsa-let-7a-5p, hsa-let-7b-5p,hsa-let-7c-5p, hsa-let-7d-5p,hsa-let-7e-5p -
[1] LIM H W, PERSHING S, MOSHFEGHI D M, et al. Causes of childhood blindness in the united states using the iris® registry (intelligent research in sight)[J]. Ophthalmology, 2023, 130(9): 907-913. doi: 10.1016/j.ophtha.2023.04.004 [2] ZHOU Y D, WANG Z C, ZHOU H X, et al. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity[J]. Exp Eye Res, 2023, 232: 109518. DOI: 10.1016/j.exer.2023.109518. [3] ZHAO K, JIANG Y P, ZHANG J, et al. Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway[J]. Cell Cycle, 2022, 21(19): 2091-2108. doi: 10.1080/15384101.2022.2087277 [4] VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706 [5] MESTER-TONCZAR J, EINZINGER P, HASIMBEGOVIC E, et al. A CircRNA-miRNA-mRNA network for exploring doxorubicin- and myocet-Induced cardiotoxicity in a translational porcine model[J]. Biomolecules, 2023, 13(12): 1711. DOI: 10.3390/biom13121711. [6] NISAR S, BHAT A A, SINGH M, et al. Insights into the role of circRNAs: biogenesis, characterization, functional, and clinical impact in Human Malignancies[J]. Front Cell Dev Biol, 2021, 9: 617281. DOI: 10.3389/fcell.2021.617281. [7] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7 [8] JIANG L, WANG X Y, ZHAN X P, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene X, 2020, 5: 100036. DOI: 10.1016/j.gene.2020.100036. [9] ZHANG C T, GAO R, ZHOU R H, et al. The emerging power and promise of non-coding RNAs in chronic pain[J]. Front Mol Neurosci, 2022, 15: 1037929. DOI: 10.3389/fnmol.2022.1037929. [10] 中华医学会眼科分会眼底病学组. 中国早产儿视网膜病变筛查指南(2014年)[J]. 中华眼科杂志, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017Group of Fundus Diseases, Chinese Ophthalmological Society. Screening guidelines for retinopathy in premature infants in China (2014)[J]. Chinese Journal of Ophthalmology, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017 [11] HUGHES C P, O ' FLYNN N M J, GATHERER M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2018, 13: 86-98. [12] MAHMOUDI E, CAIRNS M J. CircRNA and Ageing[J]. Subcell Biochem, 2023, 102: 249-270. [13] WAWRZYNIAK O, ZAREBSKA ż, KUCZYN ' SKI K, et al. Protein-related circular RNAs in human pathologies[J]. Cells, 2020, 9(8): 1841. DOI: 10.3390/cells9081841. [14] ZHOU W Y, CAI Z R, LIU J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1): 172. DOI: 10.1186/s12943-020-01286-3. [15] 郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896 [16] 盛磊, 林慧, 仇妮, 等. 翠云草总黄酮经环状RNA circ_0006528通路抑制结直肠癌恶性生物学行为研究[J]. 实用临床医药杂志, 2022, 26(4): 106-113.SHENG L, LIN H, QIU N, et al. Study on total flavonoids from Selaginella uncinata in inhibiting malignant behavior of colorectal cancer cells through circular RNA circ_0006528 pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(4): 106-113. [17] 刘德慧, 严玉兰. 环状RNA在肺癌诊断及预后中的研究进展[J]. 实用临床医药杂志, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851LIU D H, YAN Y L. Research progress of circRNAs in diagnosis and prognosis of lung cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851 [18] ZHANG Y, YUAN F K, LIU L, et al. The role of the miR-21/SPRY2 axis in modulating proangiogenic factors, epithelial phenotypes, and wound healing in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3854-3862. doi: 10.1167/iovs.19-27013 [19] GUAN J T, LI X X, PENG D W, et al. MicroRNA-18a-5p administration suppresses retinal neovascularization by targeting FGF1 and HIF1A[J]. Front Pharmacol, 2020, 11: 276. DOI: 10.3389/fphar.2020.00276. [20] QIU S K, XIE L, LU C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1): 296. DOI: 10.1186/s13046-022-02499-8. [21] SHI S Y, JIN Y, SONG H S, et al. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1[J]. Biochem Cell Biol, 2019, 97(4): 423-430. doi: 10.1139/bcb-2018-0304 [22] DESJARLAIS M, WIRTH M, RIVERA J C, et al. MicroRNA-96 promotes vascular repair in oxygen-induced retinopathy-a novel uncovered vasoprotective function[J]. Front Pharmacol, 2020, 11: 13. DOI: 10.3389/fphar.2020.00013. [23] VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706 [24] 程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807CHENG F, QIU Z L, ZHENG C M, et al. Mechanism of JAK/STAT signaling pathway in the early stage severe acute pancreatitis rats[J]. Chinese Journal of General Practice, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807 [25] DU M K, CUI Z H, CHEN D Q, et al. Hypoxia-inducible factor stabilisation-related lncRNAs in retinopathy of prematurity[J]. J Obstet Gynaecol, 2023, 43(1): 2178289. DOI: 10.1080/01443615.2023.2178289. -