留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环状RNA在早产儿视网膜病变患儿血浆中的表达变化

张丽亚 朱攀 金夏敏 揭青青 崔英波 陈黎丽

张丽亚, 朱攀, 金夏敏, 揭青青, 崔英波, 陈黎丽. 环状RNA在早产儿视网膜病变患儿血浆中的表达变化[J]. 中华全科医学, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909
引用本文: 张丽亚, 朱攀, 金夏敏, 揭青青, 崔英波, 陈黎丽. 环状RNA在早产儿视网膜病变患儿血浆中的表达变化[J]. 中华全科医学, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909
ZHANG Liya, ZHU Pan, JIN Xiamin, JIE Qingqing, CUI Yingbo, CHEN Lili. Differential expression of circular RNAs in the plasma of premature infants with retinopathy[J]. Chinese Journal of General Practice, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909
Citation: ZHANG Liya, ZHU Pan, JIN Xiamin, JIE Qingqing, CUI Yingbo, CHEN Lili. Differential expression of circular RNAs in the plasma of premature infants with retinopathy[J]. Chinese Journal of General Practice, 2025, 23(3): 383-387. doi: 10.16766/j.cnki.issn.1674-4152.003909

环状RNA在早产儿视网膜病变患儿血浆中的表达变化

doi: 10.16766/j.cnki.issn.1674-4152.003909
基金项目: 

浙江省医药卫生科技计划项目 2021KY319

浙江省医药卫生科技计划项目 2021KY324

宁波市科技计划项目 2019A21002

宁波市卫生健康科技计划项目 2023Y21

第四轮宁波市医学重点学科建设计划项目 2022-B17

2022年宁波市第一批医疗卫生高端团队重大攻坚项目 2022020405

详细信息
    通讯作者:

    陈黎丽,E-mail:chenll202303@163.com

  • 中图分类号: R722.6 R774.1

Differential expression of circular RNAs in the plasma of premature infants with retinopathy

  • 摘要:   目的  分析早产儿视网膜病变(ROP)患儿血浆中环状RNA(circRNA)的表达谱变化。  方法  选取2023年1—8月于宁波大学附属妇女儿童医院住院治疗的ROP患儿3例为ROP组,同期无ROP患儿3例为对照组。采用高通量测序技术检测并筛选出血浆中差异表达的circRNA,应用生物信息学进行基因本体论(GO)注释、京都基因和基因组百科全书(KEGG)分析。利用在线数据库预测circRNA可能靶向的微小RNA(miRNA)。  结果  与对照组比较,ROP组患者血浆中共有108个circRNA呈显著差异性表达(P<0.05,差异倍数≥1),包括41个表达上调和67个表达下调的circRNA。生物信息学分析发现,质子转运ATP合酶、细胞代谢等通路在ROP的发生发展中作用较大。应用miRanda和psRobot软件预测circRNA与miRNA差异表达的关系,绘制circRNA-miRNA调控网络图。  结论  ROP组与对照组中circRNA存在差异表达。这些circRNA可能参与ROP的发生、发展过程,有可能成为ROP的新型诊断和治疗的潜在分子标志物。

     

  • 图  1  差异表达circRNA MA图

    注:横坐标为两样品circRNA表达量之积对2取对数的值,即log2(A*B),A和B分别表示circRNA在两样本中的表达量,纵坐标为表达量之商对2取对数的值,即log2(A/B)。红点表示该组上调circRNA,蓝点表示该组下调circRNA,灰点表示非显著差异表达circRNA。

    Figure  1.  MA Plot of Differentially Expressed circRNAs

    图  2  GO富集分析柱状图

    横坐标为Go level2等级的term,纵坐标为每个term富集的-lg(P-value)。

    Figure  2.  GO enrichment analysis for the host genes of circRNA

    图  3  KEGG Pathway富集结果柱状图

    注:横坐标为pathway名称,纵坐标为每个pathway富集的-lg(P-value)。

    Figure  3.  KEGG Pathway enrichment analysis for the host genes of circRNA

    表  1  ROP组与正常对照组差异表达的前10位circRNA

    Table  1.   The top 10 differentially expressed circRNAs between ROP group and normal control group

    circRNA 表达
    情况
    log2倍数
    变化
    差异
    倍数
    P
    hsacirc_023006 1.539 898 442 2.907 740 33 0.005 217 30
    hsacirc_018939 2.822 699 769 7.074 851 02 0.005 511 44
    hsacirc_022005 1.645 302 529 3.128 134 46 0.005 904 15
    hsacirc_032202 Inf Inf 0.005 937 40
    hsacirc_039472 2.139 503 168 4.406 102 83 0.006 225 46
    hsacirc_028841 2.443 802 954 5.440 740 25 0.006 307 36
    hsacirc_005342 3.811 709 842 14.042 324 2 0.006 695 37
    hsacirc_014746 2.874 289 008 7.332 417 87 0.007 831 36
    hsacirc_020683 2.690 666 771 6.456 117 21 0.009 795 87
    hsacirc_023176 1.882 270 457 3.686 547 78 0.010 698 29
    hsacirc_000912 -Inf 0 0.000 015 10
    hsacirc_023530 -1.450 429 972 0.365 912 35 0.000 137 53
    hsacirc_015864 -1.381 069 717 0.383 934 01 0.000 240 20
    hsacirc_034631 -3.377 044 657 0.096 251 66 0.000 649 55
    hsacirc_018196 -2.856 604 033 0.138 062 74 0.000 821 47
    hsacirc_009338 -1.315 048 131 0.401 912 08 0.001 033 38
    hsacirc_020848 -1.442 505 622 0.367 927 74 0.002 032 14
    hsacirc_007605 -Inf 0 0.002 250 88
    hsacirc_035263 -4.510 997 934 0.043 858 55 0.003 878 46
    hsacirc_047998 -4.307 990 44 0.050 485 38 0.004 055 68
    注:Inf 表示无穷大,-Inf 表示无穷小。
    下载: 导出CSV

    表  2  差异表达的circRNA与miRNA结合位点的预测结果

    Table  2.   Prediction results of differentially expressed circRNA and miRNA binding sites

    表达趋势 circRNAs 数量 前5位miRNAs
    上调 hsacirc_023006 64 hsa-miR-23a-3p, hsa-miR-103a-2-5p,hsa-miR-103a-1-5p, hsa-miR-214-3p,hsa-miR-23b-3p
    hsacirc_018939 101 hsa-let-7a-3p, hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-miR-19a-3p, hsa-miR-19b-3p
    hsacirc_022005 1 414 hsa-let-7a-3p, hsa-let-7a-2-3p,hsa-let-7b-3p, hsa-let-7c-3p,hsa-let-7f-1-3p
    hsacirc_032202 75 hsa-miR-29a-3p, hsa-miR-29b-3p,hsa-miR-103a-2-5p, hsa-miR-103a-1-5p, hsa-miR-196a-3p
    hsacirc_039472 227 hsa-miR-22-5p, hsa-miR-106a-3p,hsa-miR-16-2-3p, hsa-miR-34a-5p,hsa-miR-211-3p
    下调 hsacirc_000912 2 513 hsa-let-7a-5p, hsa-let-7a-3p,hsa-let-7a-2-3p, hsa-let-7b-5p,hsa-let-7b-3p
    hsacirc_023530 198 hsa-let-7c-3p, hsa-miR-20a-3p,hsa-miR-22-5p, hsa-miR-23a-5p,hsa-miR-23a-3p
    hsacirc_015864 50 hsa-miR-214-3p, hsa-miR-145-3p,hsa-miR-370-5p, hsa-miR-431-3p,hsa-miR-485-3p
    hsacirc_034631 40 hsa-miR-196a-5p, hsa-miR-128-1-5p,hsa-miR-135a-5p, hsa-miR-128-2-5p,hsa-miR-135b-5p
    hsacirc_018196 654 hsa-let-7a-5p, hsa-let-7b-5p,hsa-let-7c-5p, hsa-let-7d-5p,hsa-let-7e-5p
    下载: 导出CSV
  • [1] LIM H W, PERSHING S, MOSHFEGHI D M, et al. Causes of childhood blindness in the united states using the iris® registry (intelligent research in sight)[J]. Ophthalmology, 2023, 130(9): 907-913. doi: 10.1016/j.ophtha.2023.04.004
    [2] ZHOU Y D, WANG Z C, ZHOU H X, et al. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity[J]. Exp Eye Res, 2023, 232: 109518. DOI: 10.1016/j.exer.2023.109518.
    [3] ZHAO K, JIANG Y P, ZHANG J, et al. Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway[J]. Cell Cycle, 2022, 21(19): 2091-2108. doi: 10.1080/15384101.2022.2087277
    [4] VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706
    [5] MESTER-TONCZAR J, EINZINGER P, HASIMBEGOVIC E, et al. A CircRNA-miRNA-mRNA network for exploring doxorubicin- and myocet-Induced cardiotoxicity in a translational porcine model[J]. Biomolecules, 2023, 13(12): 1711. DOI: 10.3390/biom13121711.
    [6] NISAR S, BHAT A A, SINGH M, et al. Insights into the role of circRNAs: biogenesis, characterization, functional, and clinical impact in Human Malignancies[J]. Front Cell Dev Biol, 2021, 9: 617281. DOI: 10.3389/fcell.2021.617281.
    [7] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
    [8] JIANG L, WANG X Y, ZHAN X P, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene X, 2020, 5: 100036. DOI: 10.1016/j.gene.2020.100036.
    [9] ZHANG C T, GAO R, ZHOU R H, et al. The emerging power and promise of non-coding RNAs in chronic pain[J]. Front Mol Neurosci, 2022, 15: 1037929. DOI: 10.3389/fnmol.2022.1037929.
    [10] 中华医学会眼科分会眼底病学组. 中国早产儿视网膜病变筛查指南(2014年)[J]. 中华眼科杂志, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017

    Group of Fundus Diseases, Chinese Ophthalmological Society. Screening guidelines for retinopathy in premature infants in China (2014)[J]. Chinese Journal of Ophthalmology, 2014, 50(12): 933-935. doi: 10.3760/cma.j.issn.0412-4081.2014.12.017
    [11] HUGHES C P, O ' FLYNN N M J, GATHERER M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2018, 13: 86-98.
    [12] MAHMOUDI E, CAIRNS M J. CircRNA and Ageing[J]. Subcell Biochem, 2023, 102: 249-270.
    [13] WAWRZYNIAK O, ZAREBSKA ż, KUCZYN ' SKI K, et al. Protein-related circular RNAs in human pathologies[J]. Cells, 2020, 9(8): 1841. DOI: 10.3390/cells9081841.
    [14] ZHOU W Y, CAI Z R, LIU J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1): 172. DOI: 10.1186/s12943-020-01286-3.
    [15] 郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896

    ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
    [16] 盛磊, 林慧, 仇妮, 等. 翠云草总黄酮经环状RNA circ_0006528通路抑制结直肠癌恶性生物学行为研究[J]. 实用临床医药杂志, 2022, 26(4): 106-113.

    SHENG L, LIN H, QIU N, et al. Study on total flavonoids from Selaginella uncinata in inhibiting malignant behavior of colorectal cancer cells through circular RNA circ_0006528 pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(4): 106-113.
    [17] 刘德慧, 严玉兰. 环状RNA在肺癌诊断及预后中的研究进展[J]. 实用临床医药杂志, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851

    LIU D H, YAN Y L. Research progress of circRNAs in diagnosis and prognosis of lung cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851
    [18] ZHANG Y, YUAN F K, LIU L, et al. The role of the miR-21/SPRY2 axis in modulating proangiogenic factors, epithelial phenotypes, and wound healing in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3854-3862. doi: 10.1167/iovs.19-27013
    [19] GUAN J T, LI X X, PENG D W, et al. MicroRNA-18a-5p administration suppresses retinal neovascularization by targeting FGF1 and HIF1A[J]. Front Pharmacol, 2020, 11: 276. DOI: 10.3389/fphar.2020.00276.
    [20] QIU S K, XIE L, LU C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1): 296. DOI: 10.1186/s13046-022-02499-8.
    [21] SHI S Y, JIN Y, SONG H S, et al. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1[J]. Biochem Cell Biol, 2019, 97(4): 423-430. doi: 10.1139/bcb-2018-0304
    [22] DESJARLAIS M, WIRTH M, RIVERA J C, et al. MicroRNA-96 promotes vascular repair in oxygen-induced retinopathy-a novel uncovered vasoprotective function[J]. Front Pharmacol, 2020, 11: 13. DOI: 10.3389/fphar.2020.00013.
    [23] VISHWAKARMA S, KAUR I. Molecular mediators and regulators of retinal angiogenesis[J]. Semin Ophthalmol, 2023, 38(2): 124-133. doi: 10.1080/08820538.2022.2152706
    [24] 程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807

    CHENG F, QIU Z L, ZHENG C M, et al. Mechanism of JAK/STAT signaling pathway in the early stage severe acute pancreatitis rats[J]. Chinese Journal of General Practice, 2023, 21(1): 41-44, 65. doi: 10.16766/j.cnki.issn.1674-4152.002807
    [25] DU M K, CUI Z H, CHEN D Q, et al. Hypoxia-inducible factor stabilisation-related lncRNAs in retinopathy of prematurity[J]. J Obstet Gynaecol, 2023, 43(1): 2178289. DOI: 10.1080/01443615.2023.2178289.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 网络出版日期:  2025-05-14

目录

    /

    返回文章
    返回