The value of demography, blood routine and serum biochemical indexes in predicting hypertensive disorder complicating pregnancy
-
摘要:
目的 回顾性分析孕早期孕妇的人口学特征、血常规及生化指标,探究这些因素在妊娠期高血压疾病(HDP)中的预测价值。 方法 根据纳排标准选取2018年5月1日—2022年4月30日在宁波大学附属阳明医院定期产检并分娩的孕妇16 112例,按入院顺序将2018年5月1日—2021年4月30日的12 889例孕妇作为观察组,构建模型预测HDP;2021年5月1日—2022年4月30日的3 223例孕妇作为验证组,进行模型验证。调查研究对象人口学特征、孕早期(8~12+6周)血常规及生化检查数据, 通过logistic回归分析对观察组建立HDP预测模型, 并进行外部验证, 绘制ROC曲线并计算AUC, 分析该模型的临床预测价值。 结果 观察组共12 889例,其中HDP患者1 196例,占9.28%。多因素回归模型分析显示,年龄、既往病史、BMI、血细胞比容(HCT)、HB、TG、HDL、LDL、TC、ALB均为HDP的影响因素。基于上述各因素构建HDP的联合预测模型,评分阈值1.5分时预测HDP发生的AUC为0.766。 结论 基于人口学、血常规及生化指标构建的临床模型对妊娠期高血压疾病具有一定的预测价值。 Abstract:Objective The purpose of this study was to investigate the predictive value of demographic characteristics, blood routine, and biochemical parameters in early pregnancy for hypertensive disorders of pregnancy (HDP). Methods A total of 16 112 pregnant women who underwent regular prenatal check-ups and delivered in the Affiliated Yangming Hospital of Ningbo University from May 1, 2018 to April 30, 2022 were selected, and 12 889 cases from May 1, 2018 to April 30, 2021 were selected as the observation group for the construction of the prediction model. A total of 3 223 cases from May 1, 2021 to April 30, 2022 were used as validation groups for external validation of the prediction model. The demographic characteristics, blood routine, and biochemical examination data of all research subjects were investigated in the first trimester (8-12+6 weeks), and the prediction model of HDP for the observation group was established by logistics regression statistical method, and the model was verified by the validation group, and the ROC curve was obtained and the area under the ROC curve was calculated, and the clinical prediction performance of the prediction model was evaluated. Results A total of 12 889 patients were in the observation group, of which 1 196 were HDP patients, accounting for 9.28%. Multivariate regression model analysis showed that age, medical history, BMI, hematocrit (HCT), HB, TG, HDL, LDL, TC, and ALB were influencing factors of HDP. Based on these factors, a combined prediction model for HDP was constructed, and when the scoring threshold was 1.5, the AUC for predicting the occurrence of HDP was 0.766. Conclusion Clinical models based on demographic, blood routine, and biochemical indicators have certain predictive value for hypertensive diseases in pregnancy. -
表 1 不同人口学资料观察组孕妇HDP患病率比较[例(%)]
Table 1. Comparison of the prevalence of HDP in pregnant women with different demographic data in the observation group [cases (%)]
项目 例数 HDP患病情况 χ2值 P值 年龄(岁) 25.740 <0.001 <35 10 564 916(8.67) ≥35 2 325 280(12.04) 产次(次) 0.001 0.989 1 7 649 710(9.28) ≥2 5 240 486(9.27) 孕次(次) 0.704 0.703 1 5 003 476(9.51) 2 4 214 390(9.25) ≥3 3 672 330(8.99) 居住地 0.343 0.558 农村 3 892 370(9.51) 城市 8 997 826(9.18) 文化程度 0.936 0.626 大学以上 1 715 170(9.91) 大学 9 952 912(9.16) 大学以下 1 222 114(9.33) BMI 460.935 <0.001 <18.5 2 407 93(3.86) 18.5~23.9 3 701 177(4.78) 24.0~27.9 3 717 370(9.95) ≥28.0 3 064 556(18.15) 既往病史 5.172 0.023 是 11 970 1 130(9.44) 否 919 66(7.18) 表 2 不同血常规指标观察组孕妇HDP患病率比较[例(%)]
Table 2. Comparison of the prevalence of HDP in pregnant women with different blood routine indicators [cases (%)]
项目 例数 HDP患病情况 χ2值 P值 PLT(×109/L) 1.577 0.455 <100 1 796 162(9.02) 100~300 4 199 409(9.74) >300 6 894 625(9.07) HB(g/L) 442.149 <0.001 ≥100 4 603 759(16.49) <100 8 286 437(5.27) HCT(%) 65.834 <0.001 <37 6 360 712(11.19) 37~48 5 728 399(6.97) >48 801 85(10.61) 表 3 不同生化指标观察组孕妇HDP患病率比较[例(%)]
Table 3. Comparison of the prevalence of HDP in pregnant women with different biochemical indicators in the observation group [cases (%)]
项目 例数 HDP患病情况 χ2值 P值 TC(mmol/L) 171.275 <0.001 ≥5.2 8 463 990(11.70) <5.2 4 426 206(4.65) TG(mmol/L) 352.046 <0.001 <0.4 2 958 228(7.71) 0.4~1.8 5 267 247(4.69) >1.8 4 664 721(15.46) HDL(mmol/L) 288.871 <0.001 <1.29 3 227 492(15.25) 1.29~1.55 4 331 169(3.90) >1.55 5 331 535(10.04) LDL(mmol/L) 88.401 <0.001 <3.12 7 796 572(7.34) ≥3.12 5 093 624(12.25) ALT(U/L) 0.405 0.524 0~40 7 644 699(9.14) >40 5 245 497(9.48) AST(U/L) 0.042 0.837 0~40 6 912 638(9.23) >40 5 977 558(9.34) D-BIL(μmo/L) 0.003 0.958 >7.0 6 349 590(9.29) 0~7.0 6 540 606(9.27) T-BIL(μmol/L) 3.125 0.210 <3.4 4 329 410(9.47) 3.4~17.1 5 271 506(9.60) >17.1 3 289 280(8.51) UA(μmo/L) 3.331 0.189 <89 3 369 331(9.82) 89~357 6 838 638(9.33) >357 2 682 227(8.46) ALB(g/L) 60.981 <0.001 <35 2 766 178(6.44) 35~50 6 071 536(8.83) >50 4 052 482(11.90) 表 4 变量赋值情况
Table 4. Variable assignment
变量 赋值方法 HDP 未发生=0,发生=1 年龄(岁) <35=0,≥35=1 既往病史 否=0,是=1 BMI <18.5=0,18.5~23.9=1,24.0~27.9=2,≥28.0=3 HCT(%) <0.37=0,0.37~0.48=1,>0.48=2 HB(g/L) <100=0,≥100=1 TG(mmol/L) <0.4=0,0.4~1.8=1,>1.8=2 HDL(mmol/L) >1.55=0,1.29~1.55=1,<1.29=2 LDL(mmol/L) <3.12=0,≥3.12=1 TC(mmol/L) <5.2=0,≥5.2=1 ALB(g/L) <35=0,35~50=1,>50=2 表 5 观察组孕妇HDP影响因素的多因素logistic回归分析
Table 5. Multivariate logistic regression analysis of influencing factors of HDP in pregnant women in the observation group
变量 B SE Waldχ2 P值 OR值 95% CI 年龄 0.765 0.213 12.899 <0.001 2.149 1.416~3.262 既往病史 0.698 0.198 12.427 <0.001 2.010 1.363~2.963 BMI 0.701 0.208 11.358 0.001 2.016 1.341~3.030 HCT 0.675 0.221 9.329 0.002 1.964 1.274~3.029 HB 0.705 0.243 8.417 0.004 2.024 1.257~3.259 TG 0.717 0.199 12.982 <0.001 2.048 1.387~3.025 HDL -0.847 0.231 13.444 <0.001 0.429 0.273~0.674 LDL 0.784 0.234 11.225 0.001 2.190 1.385~3.465 TC 0.743 0.228 10.620 0.001 2.102 1.345~3.287 ALB 0.674 0.207 10.602 0.001 1.962 1.308~2.944 表 6 验证组预测模型各评分阈值评估结果
Table 6. Evaluation results of each score threshold of the prediction model in the validation group
评分阈值 灵敏度(%) 特异度(%) 阳性预测值(%) 阴性预测值(%) 约登指数 0.5 92.1 25.1 5.3 98.4 0.161 1.0 76.6 46.8 6.8 97.8 0.233 1.5 48.9 82.0 11.2 97.2 0.281 2.0 34.0 90.2 14.5 96.6 0.217 2.5 14.2 97.4 20.8 96.0 0.104 3.0 10.1 99.0 32.6 95.8 0.106 3.5 4.5 99.7 40.2 95.5 0.061 4.0 2.3 99.9 43.8 95.3 0.022 -
[1] 中华医学会心血管病学分会女性心脏健康学组, 中华医学会心血管病学分会高血压学组. 妊娠期高血压疾病血压管理专家共识(2019)[J]. 中华心血管病杂志, 2020, 48(3): 195-204. doi: 10.3760/cma.j.cn112148-20191024-00652Women's Heart Health Group of the Cardiovascular Disease Branch of the Chinese Medical Association, and Hypertension Group of the Cardiovascular Disease Branch of the Chinese Medical Association. Expert consensus on blood pressure management in hypertensive disorders of pregnancy (2019)[J]. Chinese Journal of Cardiology, 2020, 48(3): 195-204. doi: 10.3760/cma.j.cn112148-20191024-00652 [2] 杨甜, 姚强. 2022年加拿大妇产医师协会第426号临床指南: 妊娠期高血压疾病的诊断、预测、预防和管理要点解读[J]. 中国计划生育和妇产科, 2023, 15(6): 3-5.YANG T, YAO Q. Interpretation of Key Points for Diagnosis, Prediction, Prevention, and Management of hypertensive disorder complicating pregnancy (HDP) in Canadian Obstetricians and Gynecologists Association Clinical Guideline No. 426 of 2022 [J]. Chinese Journal of Family Planning and Gynecotokology, 2023, 15(6): 3-5. [3] MONNARI F, MENICHINI D, SPANOBASCIO L, et al. A first trimeter prediction model for large for gestational age infants: a preliminary study[J]. BMC Pregnancy Child, 2021, 21(1): 654. DOI: 10.1186/s12884-021-04127-3. [4] VERLOHREN S, PERSCHEL F H, THILAGANATHAN B, et al. Angiogenic markers and cardiovascular indices in the prediction of hypertensive disorders of pregnancy[J]. Hypertension, 2017, 69(6): 1192-1197. doi: 10.1161/HYPERTENSIONAHA.117.09256 [5] ZWERTBROEK E F, BROEKHUIJSEN K, LANGENVELD J, et al. Prediction of progression to severe disease in women with late preterm hypertensive disorders of pregnancy[J]. Acta Obstet Gynecol Scand, 2017, 96(1): 96-105. doi: 10.1111/aogs.13051 [6] 洪岩, 谢增霞, 张红. 妊娠期高血压疾病孕妇妊娠早期24 h血压变异性检测及其预后分析[J]. 海南医学, 2021, 32(8): 993-995. doi: 10.3969/j.issn.1003-6350.2021.08.011HONG Y, XIE Z X, ZHANG H. Analysis of detection of 24 h blood pressure variability in pregnant women with hypertension during pregnancy and its prognosis[J]. Hainan Medical Journal, 2021, 32(8): 993-995. doi: 10.3969/j.issn.1003-6350.2021.08.011 [7] METOKI H, IWANLA N, HANLADA H, et al. Hypertensive disorders of pregnancy: definitio, managenlent and out-of-office blood pressure measurement[J]. Hypertensres, 2022, 45(8): 1298-1309. [8] 潘亚静, 邓文秋. 妊娠期高血压患者血常规指标变化及其与炎性标记物的相关性研究[J]. 新疆医科大学学报, 2020, 43(6): 768-772. doi: 10.3969/j.issn.1009-5551.2020.06.019PAN Y J, DENG W Q. Changes of hematologic parameters and their correlation with inflammatory markers in patients with hypertension during pregnancy[J]. Journal of Xinjiang Medical University, 2020, 43(6): 768-772. doi: 10.3969/j.issn.1009-5551.2020.06.019 [9] DUHIG K E, WEBSTER L M, SHAP A, et al. Diagnostic accuracy of repeat placental growth factor measurements in women with suspected preeclampsia: a case series study[J]. Acta Obstet Gynecol Scand, 2020, 99(8): 994-1002. doi: 10.1111/aogs.13818 [10] 季建生, 陈梦凡, 周梦林, 等. 构建和验证基于人口学及临床特征的妊娠期高血压疾病预测模型[J]. 中国妇幼保健, 2021, 36(21): 4878-4884.JI J S, CHEN M F, ZHOU M L, et al. Construction and verification of prediction model of hypertensive disorders of preg-nancy based on demographic and clinical characteristics[J]. Maternal and Child Health Care of China, 2021, 36(21): 4878-4884. [11] 王海娜, 顾优飞, 陆静静, 等. 310例高龄产妇生育现状、并发症及妊娠不良结局分析[J]. 中华全科医学, 2020, 18(4): 609-611. doi: 10.16766/j.cnki.issn.1674-4152.001310WANG H N, GU Y F, LU J J, et al. Analysis of fertility status, complications and adverse pregnancy outcomes in 310 elderly parturient women[J]. Chinese Journal of General Practice, 2020, 18(4): 609-611. doi: 10.16766/j.cnki.issn.1674-4152.001310 [12] ACOG. ACOG practice bulletin No. 202: gestational hypertension and preeclampsia[J]. Obstet Gynecol, 2019, 133(1): 1-10. [13] KE J F, LIU S, GE R L, et al. Associations of maternal pre-pregnancy BMI and gestational weight gain with the risks of adverse pregnancy outcomes in Chinese women with gestational diabetes mellitus[J]. BMC Pregnancy Child, 2023, 23(1): 414. DOI: 10.1186/s12884-023-05657-8. [14] 储华, 陆艳, 刘明松. 孕早期子宫动脉超声参数预测模型对子痫前期风险的预测价值[J]. 中华全科医学, 2023, 21(9): 1563-1565. doi: 10.16766/j.cnki.issn.1674-4152.003171CHU H, LU Y, LIU M S. Predictive value of uterine artery ultrasound parameter prediction model for preeclampsia risk in early pregnancy[J]. Chinese Journal of General Practice, 2023, 21(9): 1563-1565. doi: 10.16766/j.cnki.issn.1674-4152.003171 [15] BJÖRKMAN S, LILLIECREUTZ C, BLADH M, et al. Microvascular dysfunction in women with a history of hypertensive disorders of pregnancy: a population-based retrospective cohort study[J]. Int J Gynecol Obstet, 2024, 131(4): 433-443. [16] MEEK C L, STEWART Z A, FEIG D S, et al. Metabolomic insights into maternal and neonatal complications in pregnancies affected by type 1 diabetes[J]. Diabetologia, 2023, 66(11): 2101-2116. doi: 10.1007/s00125-023-05989-2 [17] GUDETA T A, REGASSA T M. Pregnancy induced hypertension and associated factors among women attending delivery service at Mizan-Tepi University Teaching Hospital, Tepi General Hospital and Gebretsadik Shawo Hospital, Southwest, Ethiopia[J]. Ethiop J Healthdev, 2019, 29(1): 831-840. [18] ZAKI M, BASHA W, EL-BASSYOUNI H T, et al. Evaluation of DNA damage profile in obese women and its association to risk of metabolic syndrome, polycystic ovary syndrome and recurrent preeclampsia[J]. Genes Dis, 2018, 5(4): 367-373. [19] SINGH S, CHAUHAN S S, RANJAN R, et al. A cross-sectional study on the incidence of retinal changes and its correlation with variables like blood pressure, liver function tests, kidney function tests, proteinuria, and pedal edema in patients of pregnancy-induced hypertension in a rural setting[J]. Indian J Ophthalmol, 2022, 70(9): 3335-3340. doi: 10.4103/ijo.IJO_900_21 -