留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GelMa水凝胶搭载葛根素复合支架促进骨缺损愈合的实验研究

张仲传 许志远 徐文第 张井泉 袁伶俐

张仲传, 许志远, 徐文第, 张井泉, 袁伶俐. GelMa水凝胶搭载葛根素复合支架促进骨缺损愈合的实验研究[J]. 中华全科医学, 2025, 23(6): 937-941. doi: 10.16766/j.cnki.issn.1674-4152.004037
引用本文: 张仲传, 许志远, 徐文第, 张井泉, 袁伶俐. GelMa水凝胶搭载葛根素复合支架促进骨缺损愈合的实验研究[J]. 中华全科医学, 2025, 23(6): 937-941. doi: 10.16766/j.cnki.issn.1674-4152.004037
ZHANG Zhongchuan, XU Zhiyuan, XU Wendi, ZHANG Jingquan, YUAN Lingli. Experimental study on the promotion of bone defect healing by GelMa hydrogel loaded with Puerarin composite scaffold[J]. Chinese Journal of General Practice, 2025, 23(6): 937-941. doi: 10.16766/j.cnki.issn.1674-4152.004037
Citation: ZHANG Zhongchuan, XU Zhiyuan, XU Wendi, ZHANG Jingquan, YUAN Lingli. Experimental study on the promotion of bone defect healing by GelMa hydrogel loaded with Puerarin composite scaffold[J]. Chinese Journal of General Practice, 2025, 23(6): 937-941. doi: 10.16766/j.cnki.issn.1674-4152.004037

GelMa水凝胶搭载葛根素复合支架促进骨缺损愈合的实验研究

doi: 10.16766/j.cnki.issn.1674-4152.004037
基金项目: 

安徽省教育厅高校自然科学研究项目 KJ2021A0757

安徽省教育厅高校自然科学研究项目 KJ2021A0756

安徽省卫生健康委重点项目 AHWJ2023A20575

详细信息
    通讯作者:

    袁伶俐,E-mail:xu115226314@163.com

  • 中图分类号: R681 R-332

Experimental study on the promotion of bone defect healing by GelMa hydrogel loaded with Puerarin composite scaffold

  • 摘要:   目的  通过构建搭载葛根素的甲基丙烯酰化明胶(GelMa)复合水凝胶,制备一种新型的可以促进骨缺损愈合的生物材料。  方法  扫描电子显微镜及杨氏模量测定,分析复合支架的物理表征。构建梯度浓度的葛根素+GelMa支架(20、40、80和100 μmol/L),通过CCK-8探究各支架在各时间点对细胞增殖的影响;ALP、茜素红染色探究各支架对于成骨分化的影响,选择最适的支架。构建颅骨缺损模型,采用完全随机设计,使用随机数表法将大鼠分为空白组、GelMa组、葛根素组、葛根素+GelMa组4组,每组3只大鼠,共12只。术后8周取材,对颅骨样本进行micro-CT、Western Blotting、HE染色、Masson ' s染色、ALP免疫组化染色以评估葛根素/GelMa支架体内对于骨缺损的作用。  结果  复合支架与单纯GelMa的孔隙率及孔径大小相似;杨氏模量显示复合支架[(3.30±0.30)MPa]与单纯GelMa[(3.22±0.25)MPa]比较差异无统计学意义(t=0.359,P=0.738);CCK-8实验显示,在80 μmol/L时葛根素对于成骨细胞增殖能力的促进作用最强(P<0.05);ALP、茜素红染色显示,80 μmol/L组的阳性面积百分比最大(P<0.05)。micro-CT、Western Blotting、HE染色、Masson's染色、ALP免疫组化表明,葛根素+GelMa组的新生骨组织长入最多,其对于骨缺损的修复能力显著高于空白组(P<0.05)。  结论  葛根素浓度为80 μmol/L的葛根素+GelMa支架具有促进成骨细胞成骨分化的能力,可以在体内有效促进骨缺损愈合,可以作为一种骨缺损修复的新型生物材料。

     

  • 图  1  扫描电镜观察水凝胶支架表征(×100)

    注:A为1组;B为5组。

    Figure  1.  Characteristics of hydrogel scaffolds observed by scanning electron microscopy (×100)

    图  2  CCK-8检测各组水凝胶对细胞活性的影响

    注:与1组比较,aP<0.05。

    Figure  2.  The effects of hydrogels in each group on cell viability detected by CCK-8

    图  3  各组水凝胶对MC3T3-E1细胞体外成骨的影响

    注:A为培养7 d后ALP染色结果(×10);B为培养14 d后茜素红染色结果(×10)。

    Figure  3.  Effect of hydrogel on MC3T3-E1 cells in vitro osteogenesis

    图  4  术后8周micro-CT扫描结果及Western Blotting检测结果

    注:A为micro-CT图片;B为各组BV/TV值比较;与空白组比较,aP<0.05;C为Western Blotting检测各组OCN、ALP的表达。

    Figure  4.  The micro-CT scan results and Western Blotting detection results 8 weeks after the operation

    图  5  组织学染色观察(×20)

    Figure  5.  Histological staining (×20)

  • [1] 李欣玲, 赵雨晴, 韩金煜, 等. 负载RGD的PLA-HA骨仿生支架促进骨缺损早期修复的研究[J]. 牙体牙髓牙周病学杂志, 2024, 29(6): 320-324.

    LI X L, ZHAO Y Q, HAN J Y, et al. Study on the early repair of bone defect with PLA-HA bionic bone scaffold loaded with RGD[J]. Journal of Endodontic Periodontology, 2024, 29(6): 320-324.
    [2] 刘欢, 武曦. miR-34a骨粉复合胶原基水凝胶促进辐照区骨缺损修复[J]. 口腔疾病防治, 2024, 32(9): 674-683.

    LIU H, WU X. miR-34a bone meal combined with collagen-based hydrogel promotes bone defect repair in irradiated area[J]. Journal of Oral Diseases Prevention and Treatment, 2024, 32(9): 674-683.
    [3] 赵晓明, 苏晨晨, 娄啸霄, 等. PFNA术后应用动物骨多肽类药物促进骨折愈合的临床疗效研究[J]. 中华全科医学, 2021, 19(3): 347-350. doi: 10.16766/j.cnki.issn.1674-4152.001806

    ZHAO X M, SU C C, LOU X X, et al. Clinical efficacy of animal bone peptides in promoting fracture healing after PFNA operation[J]. Chinese Journal of General Medicine, 2021, 19(3): 347-350. doi: 10.16766/j.cnki.issn.1674-4152.001806
    [4] 王玥琪, 赵志远, 高菲, 等. 载ADSCs的GelMa水凝胶对糖尿病大鼠伤口愈合的作用[J]. 青岛大学学报(医学版), 2024, 60(2): 199-204.

    WANG Y Q, ZHAO Z Y, GAO F, et al. Effect of GelMA hydrogel containing ADSCs on wound healing in diabetic rats[J]. Journal of Qingdao University(Medical Edition), 2024, 60(2): 199-204.
    [5] 许彤彤. 载PTH(1-34)和辛伐他汀的PLA/GelMa联合给药体系对骨质疏松性骨缺损原位成骨作用的研究[D]. 长春: 吉林大学, 2024.

    XU T T. Effect of pLA/GelMA combined with pTH (1-34) and simvastatin on in situ osteogenesis of osteoporotic bone defects[D]. Changchun: Jilin University, 2024.
    [6] 申逸志, 刘芳, 左丰源, 等. 力学性能可控的甲基丙烯酸化明胶(GelMa)人工软骨性能及软骨/骨表界面结合研究[J]. 生物骨科材料与临床研究, 2022, 19(5): 9-15.

    SHEN Y Z, LIU F, ZUO F Y, et al. Study on mechanical properties and cartilage/bone surface interface bonding of GelMa artificial cartilage[J]. Orthopedic Materials and Clinical Research, 2022, 19(5): 9-15.
    [7] 姜孔昭, 李驰宇, 罗云纲, 等. 负载ZIF-8的GelMa水凝胶制备及其药物缓释性能和抑菌作用评价[J]. 吉林大学学报(医学版), 2024, 50(1): 106-112.

    JIANG K Z, LI C Y, LUO Y G, et al. Preparation of GelMa hydrogel loaded with ZIF-8 and evaluation of its slow-release performance and antibacterial activity[J]. Journal of Jilin University(Medical Science Edition), 2024, 50(1): 106-112.
    [8] 安明宇, 田思思, 张学武, 等. 葛根素治疗肝细胞癌的机制研究[J]. 巴楚医学, 2024, 7(3): 102-110.

    AN M Y, TIAN S S, ZHANG X W, et al. Study on the mechanism of puerarin in the treatment of hepatocellular carcinoma[J]. Bachu Med, 2024, 7(3): 102-110.
    [9] 曹倩, 王鹏来, 姜艳秋, 等. 葛根素调节Nrf2/HO-1信号通路对脂多糖诱导的人牙龈成纤维细胞炎症反应的影响[J]. 现代生物医学进展, 2024, 24(18): 3422-3428.

    CAO Q, WANG P L, JIANG Y Q, et al. Effect of puerarin regulating Nrf2/HO-1 signaling pathway on lipopolysaccharids-induced inflammation of human gingival fibroblasts[J]. Advances in Modern Biomedicine, 2024, 24(18): 3422-3428.
    [10] 苏清雅, 张鑫, 廖琪欣, 等. 葛根素治疗2型糖尿病及其并发症的研究进展[J]. 贵州中医药大学学报, 2024, 46(2): 70-76.

    SU Q Y, ZHANG X, LIAO Q X, et al. Research progress of puerarin in treatment of type 2 diabetes mellitus and its complications[J]. Journal of Guizhou University of Traditional Chinese Medicine, 2024, 46(2): 70-76.
    [11] 张露新, 孟璐, 张虹. 葛根素防治骨质疏松症的作用机制研究进展[J]. 现代药物与临床, 2023, 38(11): 2899-2902.

    ZHANG L X, MENG L, ZHANG H. Research progress of the mechanism of puerarin in prevention and treatment of osteoporosis[J]. Modern Medicine and Clinic, 2023, 38(11): 2899-2902.
    [12] LIN C H, SU J J, LEE S Y, et al. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells[J]. Tissue Eng Regen Med, 2018, 12(10): 2099-2111.
    [13] 孔祥宇, 王兴, 裴志伟, 等. 生物支架材料及打印技术修复骨缺损[J]. 中国组织工程研究, 2024, 28(3): 479-485.

    KONG X Y, WANG X, PEI Z W, et al. Biological scaffold materials and printing technology for repairing bone defect[J]. Tissue Engineering Research, 2024, 28(3): 479-485.
    [14] 张悦, 王征. 可注射矿化胶原水凝胶修复大鼠颅骨临界性骨缺损的研究[J]. 生物骨科材料与临床研究, 2023, 20(3): 1-6.

    ZHANG Y, WANG Z. Study of injectable mineralized collagen hydrogel in the repair of critical bone defect of skull in rats[J]. Biomedical Materials and Clinical Research, 2023, 20(3): 1-6.
    [15] 张素珊, 李赟, 于贞成, 等. 甲基丙烯酸酐化明胶水凝胶介导的骨髓间充质干细胞增强肩袖损伤后愈合的研究[J]. 组织工程与重建外科杂志, 2020, 16(4): 270-276.

    ZHANG S S, LI Y, YU Z C, et al. Effect of methacrylate gelatin hydrogel on bone marrow mesenchymal stem cells to enhance rotator cuff healing[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2020, 16(4): 270-276.
    [16] 李媛媛, 温瑜, 李俊, 等. GelMa复合水凝胶的制备与性能[J]. 太原理工大学学报, 2021, 52(5): 842-848.

    LI Y Y, WEN Y, LI J, et al. Preparation and properties of GelMa composite hydrogel[J]. Journal of Taiyuan University of Technology, 2021, 52(5): 842-848.
    [17] 张孝利, 余优成, 吴兴文, 等. GelMa水凝胶在骨组织工程中的研究进展[J]. 复旦学报(医学版), 2021, 48(6): 847-851.

    ZHANG X L, YU Y C, WU X W, et al. Research progress of GelMa hydrogel in bone tissue engineering[J]. Fudan Journal(Med), 2021, 48(6): 847-851.
    [18] 胞焦亡的影响[J]. 中国实验方剂学杂志, 2024, 30(3): 54-63.

    TU S X, WANG Y, HE X L. Effects of combined salvianolic acid B-carrhizin on scorch death of SH-SY5Y nerve cells after sugar deprivation/reoxygenation injury[J]. Chinese Journal of Experimental Formulae, 2024, 30(3): 54-63.
    [19] 杨根岭, 胡荣静, 李金艳. 葛根素对妊娠期糖尿病大鼠的治疗效果及作用机制的研究[J]. 中国中医急症, 2022, 31(1): 67-70.

    YANG G L, HU R J, LI R J. Study on therapeutic effect and mechanism of puerarin on gestational diabetes mellitus in rats[J]. Chinese Journal of Acute Chinese Medicine, 2022, 31(1): 67-70.
    [20] 杨敏, 丁传波, 马葭葭. 葛根素药理活性研究进展[J]. 人参研究, 2021, 33(6): 62-64.

    YANG M, DING C B, MA J J. Research progress on pharmacological activity of puerarin[J]. Ginseng Research, 2021, 33(6): 62-64.
    [21] 林树忠, 刘君. 不同浓度葛根素对体外培养成骨细胞的影响[J]. 中国组织工程研究, 2015, 19(11): 1658-1662.

    LIN S Z, LIU J. Effects of different concentrations of puerarin on cultured osteoblasts[J]. Chinese Journal of Tissue Engineering, 2015, 19(11): 1658-1662.
  • 加载中
图(5)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 网络出版日期:  2025-09-04

目录

    /

    返回文章
    返回