Investigation of iron metabolism level in adults in ultra-high altitude area
-
摘要:
目的 高原低氧环境会影响人体内铁的代谢,本文拟探讨长驻超高海拔地区(海拔3 500~5 500 m)人群的铁代谢水平。 方法 于2021年3—9月对长期居住在安多县(平均海拔4 800 m)的成年居民进行资料收集,排除有酗酒、肝硬化、急慢性感染、血液系统疾病的患者。记录一般资料,完成血常规、铁代谢指标以及生化指标的检测。根据铁蛋白水平将研究对象分为2组,正常组和铁过载组(铁蛋白≥1 000 ng/mL)。采用回归分析筛查影响铁蛋白的因素。 结果 共纳入361名受试者,其中女性130名,男性231名。铁过载患者28人(7.8%),全部为男性,其中23人为藏族。与正常组比较,铁过载组的年龄、BMI、高原居住时间、平均血红蛋白浓度(MCHC)、谷丙转氨酶、谷草转氨酶、γ-谷氨酰基转移酶(GGT)、促红细胞生成素(EPO)、超敏C反应蛋白均更高。LASSO回归分析显示,年龄、高原暴露时间、BMI、ALT、GGT、EPO、MCHC均为铁蛋白水平的影响因素。多元线性回归分析显示,超高海拔地区成人铁蛋白水平主要相关因素包括性别(β'= -218.094,95% CI:-301.763~-134.425)、年龄(高原暴露时间,β' =13.203,95% CI:5.850~20.557)、MCHC(β' =4.602,95% CI:1.130~8.080)、ALT(β'=1.910,95% CI:0.038~3.782)、EPO(β'=9.908,95% CI:5.027~14.790)。 结论 超高海拔地区成人铁蛋白升高可能与低氧适应有关,而过高的铁蛋白水平即铁过载是否对健康产生不利影响,需要进一步研究。 Abstract:Objective The low oxygen concentration at high altitudes can affect iron metabolism in the human body. The purpose of this study was to explore the iron metabolism in plateau populations living at ultra-high altitude areas (from 3 500 to 5 500 m). Methods Adult volunteers living in Amdo County (4 800 m above sea level) were recruited, and they provided blood samples for analyses. Patients with alcoholism, cirrhosis, acute or chronic infection, and hematological diseases were excluded. General information was recorded, and the detection of blood routine, iron metabolism indicators, and biochemical indicators were completed. Participants were divided into two groups according to serum ferritin levels: the normal group and the iron overload group (serum ferritin ≥ 1 000 ng/mL). Regression analysis was used to screen for causes affecting ferritin. Results A total of 361 participants were included, 130 of whom were female, 231 of whom were male. Twenty-eight participants (7.8%) were diagnosed with iron overload, all were male, 23 of whom were Tibetan. Compared with the normal group, age, BMI, altitude residence time, mean corpuscular hemoglobin concentration (MCHC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), erythropoietin (EPO) and C-reactive protein (CRP) in the iron overload group were higher than those in the normal group. LASSO regression analysis suggested that age, high altitude exposure time, BMI, ALT, GGT, EPO, and MCHC were influencing factors of the level of serum ferritin. Multiple linear regression analysis showed that the influencing factors of ferritin levels were gender (β'=-218.094, 95% CI: -301.763 to -134.425), age (altitude exposure time, β'=13.203, 95% CI: 5.850-20.557), MCHC (β'=4.602, 95% CI: 1.130-8.080), ALT (β'=1.910, 95% CI: 0.038-3.782), and EPO (β'=9.908, 95% CI: 5.027-14.790). Conclusion Elevated ferritin levels in adults living at ultra-high altitudes may be related to hypoxic adaptation. Whether high ferritin levels have adverse health effects needs further study. -
Key words:
- Iron metabolism /
- Iron overload /
- Ultra-high altitude /
- Erythropoietin /
- Hepcidin
-
表 1 铁过载组与非铁过载组研究对象一般资料比较
Table 1. Comparison of general data of research subjects between the iron overload group and the non-iron overload group
项目 总人群(n=361) 正常组(n=333) 铁过载组(n=28) 统计量 P值 性别[例(%)] 15.430a < 0.001 男性 231(64.0) 203(61.0) 28(100.0) 女性 130(36.0) 130(39.0) 0 民族[例(%)] 6.872a 0.009 汉族 156(43.2) 151(44.9) 5(20.0) 藏族 205(56.8) 182(55.1) 23(80.0) 年龄(x±s,岁) 32.58±6.27 32.05±5.98 38.89±6.32 -5.793b < 0.001 高原暴露时间(x±s, 年) 21.40±13.78 20.50±13.57 33.77±10.52 -5.589b < 0.001 BMI(x±s) 24.32±3.75 24.08±3.72 27.43±2.74 -4.419b < 0.001 血红蛋白(x±s, g/L) 187.18±27.39 186.87±27.93 190.89±19.78 -0.996b 0.326 血细胞比容(x±s, %) 55.42±7.95 55.41±8.11 55.49±5.82 -0.047b 0.962 MCHC(x±s, g/L) 337.58±10.87 337.02±10.90 344.11±8.08 -3.360b 0.001 ALT[M(P25, P75), U/L] 30.00(20.00, 47.00) 29.00(19.00, 44.75) 52.00(38.75, 72.25) -4.955c < 0.001 AST(x±s, IU/L) 25.84±10.43 25.08±9.72 34.68±14.03 -3.548b < 0.001 GGT[M(P25, P75), U/L] 29.00(18.25, 47.00] 28.00(18.00, 43.00) 56.50(45.50, 86.00) -5.667c < 0.001 血清铁蛋白[M(P25, P75), ng/mL] 167.36(56.59, 424.27) 138.43(51.55, 333.22) 1 410.29(1 082.10, 1 924.34) -8.790c < 0.001 转铁蛋白(x±s, g/L) 2.95±0.43 2.99±0.42 2.51±0.33 5.988b < 0.001 血清铁(x±s, μmol/L) 24.37±10.92 24.23±11.01 25.93±9.75 -0.788b 0.431 总铁结合力(x±s, μmol/L) 57.05±8.74 57.71±8.62 49.17±5.80 5.143b < 0.001 TS(x±s, %) 44.20±20.93 43.40±20.72 53.68±21.49 -2.514b 0.012 EPO[M(P25, P75), ng/mL] 6.08(3.36, 9.31) 5.96(3.05, 9.16) 7.70(5.30, 10.96) -2.094c 0.036 CRP[M(P25, P75), mg/L] 1.10(0.50, 3.20) 1.00(0.50, 3.20) 1.90(1.00, 4.58) -2.590c 0.010 注:a为χ2值,b为t值,c为Z值。 表 2 铁蛋白水平影响因素的LASSO回归分析
Table 2. LASSO regression analysis of influencing factors of ferritin levels
变量 B SE 95% CI t值 P值 性别(女性)a -395.756 41.121 -476.353~-315.158 -9.624 < 0.001 年龄 24.247 3.302 17.774~30.719 7.343 < 0.001 高原暴露时间 9.272 1.529 6.275~12.269 6.064 < 0.001 BMI 34.666 5.504 23.878~45.455 6.298 < 0.001 MCHC 10.482 1.968 6.624~14.339 5.326 < 0.001 ALT 7.739 0.796 6.178~9.300 9.717 < 0.001 GGT 5.807 0.646 4.540~7.074 8.983 < 0.001 EPO 7.219 2.354 2.605~11.833 3.066 0.002 注:因变量为铁蛋白水平,自变量为性别(男性=0,女性=1)、年龄、高原暴露时间、BMI、MCHC、ALT、GGT、EPO(连续性变量,均以实际值赋值);a以男性为参照。 表 3 铁蛋白水平影响因素的多元线性回归分析
Table 3. Multiple linear regression analysis of influencing factors of ferritin levels
变量 β SE β' 95% CI t值 P值 性别(女性)a -0.264 42.514 -218.094 -301.763~-134.425 -5.130 < 0.001 年龄 0.201 3.737 13.203 5.850~20.557 3.534 < 0.001 高原暴露时间 0.100 1.681 2.844 -0.465~6.153 1.692 0.092 BMI 0.088 5.151 9.244 -0.892~19.381 1.795 0.074 MCHC 0.125 1.766 4.602 1.130~8.080 2.606 0.010 ALT 0.120 0.951 1.910 0.038~3.782 2.008 0.046 GGT 0.107 0.801 1.429 -0.147~3.006 1.784 0.075 EPO 0.184 2.480 9.908 5.027~14.790 3.995 < 0.001 注:因变量为铁蛋白水平,自变量为性别(男性=0,女性=1)、年龄、高原暴露时间、BMI、MCHC、ALT、GGT、EPO(连续性变量,均以实际值赋值);a以男性为参照。 -
[1] PIPERNO A, GALIMBERTI S, MARIANI R, et al. Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project[J]. Blood, 2011, 17(10): 2953-2959. [2] GOETZE O, SCHMITT J, SPLIETHOFF K, et al. Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers[J]. Hepatology, 2013, 58(6): 2153-2162. doi: 10.1002/hep.26581 [3] HENNIGAR S R, BERRYMAN C E, KELLEY A M, et al. High-altitude acclimatization suppresses hepcidin expression during severe energy deficit[J]. High Alt Med Bio, 2020, 21(3): 232-236. doi: 10.1089/ham.2019.0109 [4] 中华医学会血液学分会/中国医师协会血液科医师分会. 铁过载诊断与治疗的中国专家共识[J]. 中华血液学杂志, 2011, 32(8): 572-574.Hematology Branch of Chinese Medical Association/Hematology Branch of Chinese Medical Doctor Association. Chinese expert consensus on diagnosis and treatment of iron overload[J]. Chin J Hematol, 2011, 32(8): 572-574. [5] BACON B R, ADAMS P C, KOWDLEY K V, et al. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases[J]. Hepatology, 2011, 54(1): 328-343. doi: 10.1002/hep.24330 [6] 孙舒瑶, 郭彦宏, 孙曾梅, 等. 西藏藏族铁过载患者HFE基因及非HFE基因的突变研究[J]. 中国实验血液学杂志, 2019, 27(2): 618-622.SUN S Y, GUO Y H, SUN Z M, et al. Analysis of HFE and Non-HFE mutations in a Tibet Cohort with iron overload[J]. J Exp Hematol, 2019, 27(2): 618-622. [7] 赵光斌, 符本琪, 白萍. 高原人血清铁蛋白、转铁蛋白测定及临床意义[J]. 四川医学, 2003, 24(12): 1292-1293. doi: 10.3969/j.issn.1004-0501.2003.12.008ZHAO G B, FU B Q, BAI P. The determination of serum ferritin transferrin and its clinical significance in high altitude adult[J]. Sichuan Medical Journal, 2003, 24(12): 1292-1293. doi: 10.3969/j.issn.1004-0501.2003.12.008 [8] FIGUEROA-MUJICA R, CCAHUANTICO L A, CCORAHUA-RIOS M S, et al. A critical analysis of the automated hematology assessment in pregnant women at low and at high altitude: association between red blood cells, platelet parameters, and iron status[J]. Life(Basel), 2022, 12(5): 727. [9] BEALL C M, BRITTENHAM G M, MACUAGA F, et al. Variation in hemoglobin concentration among samples of high-altitude natives in the Andes and the Himalayas[J]. Am J Hum Biol, 1990, 2(6): 639-651. doi: 10.1002/ajhb.1310020607 [10] LUNDRIN E L, JANOCHA A J, K0CH C D, et al. Plasma hepcidin of Ethiopian highlanders with steady-state hypoxia[J]. Blood, 2013, 122(11): 1989-1991. doi: 10.1182/blood-2013-03-491068 [11] STAUB K, HAEUSLER M, BENDER N, et al. Hemoglobin concentration of young men at residential altitudes between 200 and 2000 m mirrors Switzerland's topography[J]. Blood, 2020, 135(13): 1066-1069. [12] MUCKENTHALER M U, MAIRAURL H, GASSMANN M. Iron metabolism in high-altitude residents[J]. J Appl Physiol(1985), 2020, 129(4): 920-925. [13] DATZ C, FELDER T K, NIEDERSEER D, et al. Iron homeostasis in the metabolic syndrome[J]. Eur J Clin Invest, 2013, 43(2): 215-224. [14] RAMETTA R, FRACANZANI A L, FARGION S, et al. Dysmetabolic hyperferritinemia and dysmetabolic iron overload syndrome (DIOS): two related conditions or different entities?[J]. Curr Pharm Des, 2020, 26(10): 1025-1035. [15] MAHROUM N, ALGHORY A, KIYAK Z, et al. Ferritin-from iron, through inflammation and autoimmunity, to COVID-19[J]. J Autoimmun, 2022, 126: 102778. DOI: 10.1016/j.jaut.2021.102778. [16] LI M, PAN D, SUN H, et al. The hypoxia adaptation of small mammals to plateau and underground burrow conditions[J]. Animal Model Exp Med, 2021, 4(4): 319-328. [17] YANAMANDRA U, SENEE H, YANAMADRA S, et al. Erythropoietin and ferritin response in native highlanders aged 4-19 years from the Leh-Ladakh region of India[J]. Br J Haematol, 2019, 184(2): 263-268. [18] PIPERNO A, GALIMBERTI S, MARIANI R, et al. Modulation of hepcidin production during hypoxia-induced erythro-poiesis in humans in vivo: data from the HIGH-CARE project[J]. Blood, 2011, 117(10): 2953-2959. [19] RENASSIA C, PEYSSONNAUX C. New insights into the links between hypoxia and iron homeostasis[J]. Curr Opin Hematol, 2019, 26(3): 125-130. [20] ROLFS A, KVIETIKOVA I, GASSMANN M, et al. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1[J]. J Biol Chem, 1997, 272(32): 20055-20062. [21] SONG D, NAVALSKY B E, GUAN W, et al. Tibetan PHD2, an allele with loss-of-function properties[J]. Proc Natl Acad Sci U S A, 2020, 117(22): 12230-12238. -

计量
- 文章访问数: 10
- HTML全文浏览量: 9
- PDF下载量: 3
- 被引次数: 0