留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高海拔地区成人铁代谢水平调查

孙舒瑶 王溯源 尹蓉 李曼 伊雯 蒲雪 刘春蓉 邬云红 张成慧

孙舒瑶, 王溯源, 尹蓉, 李曼, 伊雯, 蒲雪, 刘春蓉, 邬云红, 张成慧. 超高海拔地区成人铁代谢水平调查[J]. 中华全科医学, 2025, 23(6): 1045-1048. doi: 10.16766/j.cnki.issn.1674-4152.004062
引用本文: 孙舒瑶, 王溯源, 尹蓉, 李曼, 伊雯, 蒲雪, 刘春蓉, 邬云红, 张成慧. 超高海拔地区成人铁代谢水平调查[J]. 中华全科医学, 2025, 23(6): 1045-1048. doi: 10.16766/j.cnki.issn.1674-4152.004062
SUN Shuyao, WANG Suyuan, YIN Rong, LI Man, YI Wen, PU Xue, LIU Chunrong, WU Yunhong, ZHANG Chenghui. Investigation of iron metabolism level in adults in ultra-high altitude area[J]. Chinese Journal of General Practice, 2025, 23(6): 1045-1048. doi: 10.16766/j.cnki.issn.1674-4152.004062
Citation: SUN Shuyao, WANG Suyuan, YIN Rong, LI Man, YI Wen, PU Xue, LIU Chunrong, WU Yunhong, ZHANG Chenghui. Investigation of iron metabolism level in adults in ultra-high altitude area[J]. Chinese Journal of General Practice, 2025, 23(6): 1045-1048. doi: 10.16766/j.cnki.issn.1674-4152.004062

超高海拔地区成人铁代谢水平调查

doi: 10.16766/j.cnki.issn.1674-4152.004062
基金项目: 

西藏科技厅自然科学基金项目 XZ202201ZR0037G

详细信息
    通讯作者:

    张成慧,E-mail:zchscu0616@163.com

  • 中图分类号: R589.9

Investigation of iron metabolism level in adults in ultra-high altitude area

  • 摘要:   目的  高原低氧环境会影响人体内铁的代谢,本文拟探讨长驻超高海拔地区(海拔3 500~5 500 m)人群的铁代谢水平。  方法  于2021年3—9月对长期居住在安多县(平均海拔4 800 m)的成年居民进行资料收集,排除有酗酒、肝硬化、急慢性感染、血液系统疾病的患者。记录一般资料,完成血常规、铁代谢指标以及生化指标的检测。根据铁蛋白水平将研究对象分为2组,正常组和铁过载组(铁蛋白≥1 000 ng/mL)。采用回归分析筛查影响铁蛋白的因素。  结果  共纳入361名受试者,其中女性130名,男性231名。铁过载患者28人(7.8%),全部为男性,其中23人为藏族。与正常组比较,铁过载组的年龄、BMI、高原居住时间、平均血红蛋白浓度(MCHC)、谷丙转氨酶、谷草转氨酶、γ-谷氨酰基转移酶(GGT)、促红细胞生成素(EPO)、超敏C反应蛋白均更高。LASSO回归分析显示,年龄、高原暴露时间、BMI、ALT、GGT、EPO、MCHC均为铁蛋白水平的影响因素。多元线性回归分析显示,超高海拔地区成人铁蛋白水平主要相关因素包括性别(β'= -218.094,95% CI:-301.763~-134.425)、年龄(高原暴露时间,β' =13.203,95% CI:5.850~20.557)、MCHC(β' =4.602,95% CI:1.130~8.080)、ALT(β'=1.910,95% CI:0.038~3.782)、EPO(β'=9.908,95% CI:5.027~14.790)。  结论  超高海拔地区成人铁蛋白升高可能与低氧适应有关,而过高的铁蛋白水平即铁过载是否对健康产生不利影响,需要进一步研究。

     

  • 表  1  铁过载组与非铁过载组研究对象一般资料比较

    Table  1.   Comparison of general data of research subjects between the iron overload group and the non-iron overload group

    项目 总人群(n=361) 正常组(n=333) 铁过载组(n=28) 统计量 P
    性别[例(%)] 15.430a < 0.001
      男性 231(64.0) 203(61.0) 28(100.0)
      女性 130(36.0) 130(39.0) 0
    民族[例(%)] 6.872a 0.009
      汉族 156(43.2) 151(44.9) 5(20.0)
      藏族 205(56.8) 182(55.1) 23(80.0)
    年龄(x±s,岁) 32.58±6.27 32.05±5.98 38.89±6.32 -5.793b < 0.001
    高原暴露时间(x±s, 年) 21.40±13.78 20.50±13.57 33.77±10.52 -5.589b < 0.001
    BMI(x±s) 24.32±3.75 24.08±3.72 27.43±2.74 -4.419b < 0.001
    血红蛋白(x±s, g/L) 187.18±27.39 186.87±27.93 190.89±19.78 -0.996b 0.326
    血细胞比容(x±s, %) 55.42±7.95 55.41±8.11 55.49±5.82 -0.047b 0.962
    MCHC(x±s, g/L) 337.58±10.87 337.02±10.90 344.11±8.08 -3.360b 0.001
    ALT[M(P25, P75), U/L] 30.00(20.00, 47.00) 29.00(19.00, 44.75) 52.00(38.75, 72.25) -4.955c < 0.001
    AST(x±s, IU/L) 25.84±10.43 25.08±9.72 34.68±14.03 -3.548b < 0.001
    GGT[M(P25, P75), U/L] 29.00(18.25, 47.00] 28.00(18.00, 43.00) 56.50(45.50, 86.00) -5.667c < 0.001
    血清铁蛋白[M(P25, P75), ng/mL] 167.36(56.59, 424.27) 138.43(51.55, 333.22) 1 410.29(1 082.10, 1 924.34) -8.790c < 0.001
    转铁蛋白(x±s, g/L) 2.95±0.43 2.99±0.42 2.51±0.33 5.988b < 0.001
    血清铁(x±s, μmol/L) 24.37±10.92 24.23±11.01 25.93±9.75 -0.788b 0.431
    总铁结合力(x±s, μmol/L) 57.05±8.74 57.71±8.62 49.17±5.80 5.143b < 0.001
    TS(x±s, %) 44.20±20.93 43.40±20.72 53.68±21.49 -2.514b 0.012
    EPO[M(P25, P75), ng/mL] 6.08(3.36, 9.31) 5.96(3.05, 9.16) 7.70(5.30, 10.96) -2.094c 0.036
    CRP[M(P25, P75), mg/L] 1.10(0.50, 3.20) 1.00(0.50, 3.20) 1.90(1.00, 4.58) -2.590c 0.010
    注:a为χ2值,bt值,cZ值。
    下载: 导出CSV

    表  2  铁蛋白水平影响因素的LASSO回归分析

    Table  2.   LASSO regression analysis of influencing factors of ferritin levels

    变量 B SE 95% CI t P
    性别(女性)a -395.756 41.121 -476.353~-315.158 -9.624 < 0.001
    年龄 24.247 3.302 17.774~30.719 7.343 < 0.001
    高原暴露时间 9.272 1.529 6.275~12.269 6.064 < 0.001
    BMI 34.666 5.504 23.878~45.455 6.298 < 0.001
    MCHC 10.482 1.968 6.624~14.339 5.326 < 0.001
    ALT 7.739 0.796 6.178~9.300 9.717 < 0.001
    GGT 5.807 0.646 4.540~7.074 8.983 < 0.001
    EPO 7.219 2.354 2.605~11.833 3.066 0.002
    注:因变量为铁蛋白水平,自变量为性别(男性=0,女性=1)、年龄、高原暴露时间、BMI、MCHC、ALT、GGT、EPO(连续性变量,均以实际值赋值);a以男性为参照。
    下载: 导出CSV

    表  3  铁蛋白水平影响因素的多元线性回归分析

    Table  3.   Multiple linear regression analysis of influencing factors of ferritin levels

    变量 β SE β' 95% CI t P
    性别(女性)a -0.264 42.514 -218.094 -301.763~-134.425 -5.130 < 0.001
    年龄 0.201 3.737 13.203 5.850~20.557 3.534 < 0.001
    高原暴露时间 0.100 1.681 2.844 -0.465~6.153 1.692 0.092
    BMI 0.088 5.151 9.244 -0.892~19.381 1.795 0.074
    MCHC 0.125 1.766 4.602 1.130~8.080 2.606 0.010
    ALT 0.120 0.951 1.910 0.038~3.782 2.008 0.046
    GGT 0.107 0.801 1.429 -0.147~3.006 1.784 0.075
    EPO 0.184 2.480 9.908 5.027~14.790 3.995 < 0.001
    注:因变量为铁蛋白水平,自变量为性别(男性=0,女性=1)、年龄、高原暴露时间、BMI、MCHC、ALT、GGT、EPO(连续性变量,均以实际值赋值);a以男性为参照。
    下载: 导出CSV
  • [1] PIPERNO A, GALIMBERTI S, MARIANI R, et al. Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project[J]. Blood, 2011, 17(10): 2953-2959.
    [2] GOETZE O, SCHMITT J, SPLIETHOFF K, et al. Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers[J]. Hepatology, 2013, 58(6): 2153-2162. doi: 10.1002/hep.26581
    [3] HENNIGAR S R, BERRYMAN C E, KELLEY A M, et al. High-altitude acclimatization suppresses hepcidin expression during severe energy deficit[J]. High Alt Med Bio, 2020, 21(3): 232-236. doi: 10.1089/ham.2019.0109
    [4] 中华医学会血液学分会/中国医师协会血液科医师分会. 铁过载诊断与治疗的中国专家共识[J]. 中华血液学杂志, 2011, 32(8): 572-574.

    Hematology Branch of Chinese Medical Association/Hematology Branch of Chinese Medical Doctor Association. Chinese expert consensus on diagnosis and treatment of iron overload[J]. Chin J Hematol, 2011, 32(8): 572-574.
    [5] BACON B R, ADAMS P C, KOWDLEY K V, et al. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases[J]. Hepatology, 2011, 54(1): 328-343. doi: 10.1002/hep.24330
    [6] 孙舒瑶, 郭彦宏, 孙曾梅, 等. 西藏藏族铁过载患者HFE基因及非HFE基因的突变研究[J]. 中国实验血液学杂志, 2019, 27(2): 618-622.

    SUN S Y, GUO Y H, SUN Z M, et al. Analysis of HFE and Non-HFE mutations in a Tibet Cohort with iron overload[J]. J Exp Hematol, 2019, 27(2): 618-622.
    [7] 赵光斌, 符本琪, 白萍. 高原人血清铁蛋白、转铁蛋白测定及临床意义[J]. 四川医学, 2003, 24(12): 1292-1293. doi: 10.3969/j.issn.1004-0501.2003.12.008

    ZHAO G B, FU B Q, BAI P. The determination of serum ferritin transferrin and its clinical significance in high altitude adult[J]. Sichuan Medical Journal, 2003, 24(12): 1292-1293. doi: 10.3969/j.issn.1004-0501.2003.12.008
    [8] FIGUEROA-MUJICA R, CCAHUANTICO L A, CCORAHUA-RIOS M S, et al. A critical analysis of the automated hematology assessment in pregnant women at low and at high altitude: association between red blood cells, platelet parameters, and iron status[J]. Life(Basel), 2022, 12(5): 727.
    [9] BEALL C M, BRITTENHAM G M, MACUAGA F, et al. Variation in hemoglobin concentration among samples of high-altitude natives in the Andes and the Himalayas[J]. Am J Hum Biol, 1990, 2(6): 639-651. doi: 10.1002/ajhb.1310020607
    [10] LUNDRIN E L, JANOCHA A J, K0CH C D, et al. Plasma hepcidin of Ethiopian highlanders with steady-state hypoxia[J]. Blood, 2013, 122(11): 1989-1991. doi: 10.1182/blood-2013-03-491068
    [11] STAUB K, HAEUSLER M, BENDER N, et al. Hemoglobin concentration of young men at residential altitudes between 200 and 2000 m mirrors Switzerland's topography[J]. Blood, 2020, 135(13): 1066-1069.
    [12] MUCKENTHALER M U, MAIRAURL H, GASSMANN M. Iron metabolism in high-altitude residents[J]. J Appl Physiol(1985), 2020, 129(4): 920-925.
    [13] DATZ C, FELDER T K, NIEDERSEER D, et al. Iron homeostasis in the metabolic syndrome[J]. Eur J Clin Invest, 2013, 43(2): 215-224.
    [14] RAMETTA R, FRACANZANI A L, FARGION S, et al. Dysmetabolic hyperferritinemia and dysmetabolic iron overload syndrome (DIOS): two related conditions or different entities?[J]. Curr Pharm Des, 2020, 26(10): 1025-1035.
    [15] MAHROUM N, ALGHORY A, KIYAK Z, et al. Ferritin-from iron, through inflammation and autoimmunity, to COVID-19[J]. J Autoimmun, 2022, 126: 102778. DOI: 10.1016/j.jaut.2021.102778.
    [16] LI M, PAN D, SUN H, et al. The hypoxia adaptation of small mammals to plateau and underground burrow conditions[J]. Animal Model Exp Med, 2021, 4(4): 319-328.
    [17] YANAMANDRA U, SENEE H, YANAMADRA S, et al. Erythropoietin and ferritin response in native highlanders aged 4-19 years from the Leh-Ladakh region of India[J]. Br J Haematol, 2019, 184(2): 263-268.
    [18] PIPERNO A, GALIMBERTI S, MARIANI R, et al. Modulation of hepcidin production during hypoxia-induced erythro-poiesis in humans in vivo: data from the HIGH-CARE project[J]. Blood, 2011, 117(10): 2953-2959.
    [19] RENASSIA C, PEYSSONNAUX C. New insights into the links between hypoxia and iron homeostasis[J]. Curr Opin Hematol, 2019, 26(3): 125-130.
    [20] ROLFS A, KVIETIKOVA I, GASSMANN M, et al. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1[J]. J Biol Chem, 1997, 272(32): 20055-20062.
    [21] SONG D, NAVALSKY B E, GUAN W, et al. Tibetan PHD2, an allele with loss-of-function properties[J]. Proc Natl Acad Sci U S A, 2020, 117(22): 12230-12238.
  • 加载中
表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-10
  • 网络出版日期:  2025-09-04

目录

    /

    返回文章
    返回