留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自发性丘脑出血后丘脑痛发生的列线图预测模型构建和验证

张茜 杨鸿阁 冯宇洋 江旺 张相彤 梁洪生

张茜, 杨鸿阁, 冯宇洋, 江旺, 张相彤, 梁洪生. 自发性丘脑出血后丘脑痛发生的列线图预测模型构建和验证[J]. 中华全科医学, 2025, 23(9): 1475-1479. doi: 10.16766/j.cnki.issn.1674-4152.004158
引用本文: 张茜, 杨鸿阁, 冯宇洋, 江旺, 张相彤, 梁洪生. 自发性丘脑出血后丘脑痛发生的列线图预测模型构建和验证[J]. 中华全科医学, 2025, 23(9): 1475-1479. doi: 10.16766/j.cnki.issn.1674-4152.004158
ZHANG Xi, YANG Hongge, FENG Yuyang, JIANG Wang, ZHANG Xiangtong, LIANG Hongsheng. Development and validation of a nomogram for predicting thalamic pain occurrence after spontaneous thalamic hemorrhage[J]. Chinese Journal of General Practice, 2025, 23(9): 1475-1479. doi: 10.16766/j.cnki.issn.1674-4152.004158
Citation: ZHANG Xi, YANG Hongge, FENG Yuyang, JIANG Wang, ZHANG Xiangtong, LIANG Hongsheng. Development and validation of a nomogram for predicting thalamic pain occurrence after spontaneous thalamic hemorrhage[J]. Chinese Journal of General Practice, 2025, 23(9): 1475-1479. doi: 10.16766/j.cnki.issn.1674-4152.004158

自发性丘脑出血后丘脑痛发生的列线图预测模型构建和验证

doi: 10.16766/j.cnki.issn.1674-4152.004158
基金项目: 

国家自然科学基金项目 82271340

哈尔滨医科大学附属第一医院杰出青年基金项目 HYD2020JQ0016

详细信息
    通讯作者:

    梁洪生,E-mail:lianghongsheng@hrbmu.edu.cn

  • 中图分类号: R743.34

Development and validation of a nomogram for predicting thalamic pain occurrence after spontaneous thalamic hemorrhage

  • 摘要:   目的  丘脑痛的发生严重影响患者的生活质量,早期识别可能发生丘脑痛的患者有助于临床上及时采取适当干预和决策以减轻患者痛苦。本研究旨在开发并验证一种列线图模型,用于预测患者自发性丘脑出血后丘脑痛的发生。  方法  回顾性选取哈尔滨医科大学附属第一医院2021年6月—2022年12月收治的294例自发性丘脑出血患者。按照7∶3的比例,通过计算机生成的随机数将患者随机分配至训练队列(206例)和内部验证队列(88例),分别用于模型构建和内部验证。使用最小绝对收缩和选择运算符(LASSO)算法,选择最适合用于模型构建的特征变量。将筛选出的变量纳入多变量logistic回归分析构建列线图模型。在训练队列和内部验证队列中使用ROC曲线和决策曲线评估模型的性能。  结果  共纳入294例患者,其中94例患者发生丘脑痛(31.97%),200例患者未发生丘脑痛(68.03%)。训练队列中的LASSO回归及logistic回归分析显示,血肿位置(P < 0.001)和改良格雷布(mGS)评分(P < 0.001)是独立预测因素,并纳入列线图预测模型。ROC曲线分析显示,该列线图模型预测性能较高(训练队列AUC:0.890;内部验证队列AUC:0.820)。决策曲线显示该模型对自发性丘脑出血后丘脑痛的发生具有较好的预测能力。  结论  本研究构建了评估患者自发性丘脑出血后丘脑痛发生风险的列线图模型,且模型预测性能较高,可指导高危患者的治疗决策。

     

  • 图  1  LASSO回归交叉验证图

    Figure  1.  Cross-validation graph for LASSO regression

    图  2  LASSO回归系数路径图

    Figure  2.  Coefficient path diagram of LASSO regression

    图  3  自发性丘脑出血后丘脑痛发生的列线图预测模型

    Figure  3.  Nomogram prediction model for the occurrence of thalamic pain after spontaneous thalamic hemorrhage

    图  4  列线图预测模型的ROC曲线

    Figure  4.  ROC curves of the nomogram prediction model

    图  5  列线图预测模型的训练队列及内部验证队列决策曲线

    Figure  5.  Decision curves of the training queue and internal validation queue of the nomogram prediction model

    表  1  2组STH患者临床资料比较

    Table  1.   Comparison of clinical data of two groups of STH patients

    项目 非丘脑痛组(n=200) 丘脑痛组(n=94) 统计量 P
    梗阻性脑积水[例(%)] 8.209a 0.004
      否 168(84.0) 90(95.7)
      是 32(16.0) 4(4.3)
    IVH[例(%)] 19.368a < 0.001
      否 40(20.0) 42(44.7)
      是 160(80.0) 52(55.3)
    血肿位置[例(%)] 43.095a < 0.001
      1 77(38.5) 72(76.6)
      2 27(13.5) 12(12.8)
      3 96(48.0) 10(10.6)
    GCS评分[M(P25, P75), 分] 13.0(9.0, 15.0) 14.0(12.0, 15.0) -2.091b 0.032
    初始血肿体积[M(P25, P75), mL] 7(4, 12) 6(3, 9) 2.757b 0.006
    中线移位[M(P25, P75), mm] 0.00(0.00, 5.69) 0.00(0.00, 0.00) 3.471b < 0.001
    mGS评分[M(P25, P75), 分] 7.0(2.0, 11.0) 2.0(0.0, 4.0) 6.610b < 0.001
    WBC[M(P25, P75)] 9.3(7.5, 12.0) 8.6(7.4, 10.2) -1.870b 0.049
    NLR[M(P25, P75)] 6.8(4.2, 11.0) 5.1(3.8, 7.9) -1.645b 0.025
    PNR[M(P25, P75)] 27(20, 37) 30(23, 43) -5.078b 0.042
    SII[M(P25, P75)] 1 415(766, 2 433) 1 110(775, 1 817) -1.861b 0.048
    注:a为χ2值,bZ值。本表仅列出差异有统计学意义的项目。
    下载: 导出CSV

    表  2  变量赋值情况

    Table  2.   Variable assignment situation

    变量 赋值方法
    血肿位置 丘脑后侧和丘脑外侧=(0,0);全丘脑=(0,1);丘脑的其他位置=(1,0)
    mGS评分 连续性变量,以实际值赋值
    丘脑痛发生 是=1,否=0
    下载: 导出CSV

    表  3  基于训练队列的多变量logistic回归分析

    Table  3.   Multivariate logistic regression analysis based on the training cohort

    变量 B SE Waldχ2 P OR 95% CI
    血肿位置
      1 3.459 0.602 5.744 < 0.001 31.792 10.809~119.809
      2 4.378 0.842 5.201 < 0.001 79.647 16.637~465.215
    mGS评分 -0.371 0.066 -5.598 < 0.001 0.690 0.599~0.778
    下载: 导出CSV
  • [1] 许莹宁, 穆琼. PPARγ激动剂对雄性大鼠脑出血后血肿周围小胶质细胞极化的影响[J]. 中华全科医学, 2024, 22(5): 781-785. doi: 10.16766/j.cnki.issn.1674-4152.003502

    XU Y N, MU Q. Effect of PPARγ agonist on microglia polarization around hematoma after cerebra hemorrhage in male rats[J]. Chinese Journal of General Practice, 2024, 22(5): 781-785. doi: 10.16766/j.cnki.issn.1674-4152.003502
    [2] LI L, MURTHY S B. Cardiovascular events after intracerebral hemorrhage[J]. Stroke, 2022, 53(7): 2131-2141. doi: 10.1161/STROKEAHA.122.036884
    [3] BARBOSA L M, DA SILVA V A, DE LIMA RODRIGUES A L, et al. Dissecting central post-stroke pain: a controlled symptom-psychophysical characterization[J]. Brain Commun, 2022, 4(3): fcac090. DOI: 10.1093/braincomms/fcac090.
    [4] KLIT H, FINNERUP N B, JENSEN T S. Central post-stroke pain: clinical characteristics, pathophysiology, and management[J]. Lancet Neurol, 2009, 8(9): 857-868. doi: 10.1016/S1474-4422(09)70176-0
    [5] LIAMPAS A, VELIDAKIS N, GEORGIOU T, et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis[J]. Adv Ther, 2020, 37(7): 3278-3291. doi: 10.1007/s12325-020-01388-w
    [6] RI S. The management of poststroke thalamic pain: update in clinical practice[J]. Diagnostics(Basel), 2022, 12(6): 1439. DOI: 10.3390/diagnostics12061439.
    [7] MOHANAN A T, NITHYA S, NOMIER Y, et al. Stroke-induced central pain: overview of the mechanisms, management, and emerging targets of central post-stroke pain[J]. Pharmaceuticals(Basel), 2023, 16(8): 1103. DOI: 10.3390/ph16081103.
    [8] FANG H, LI M, YANG J, et al. Repressing iron overload ameliorates central post-stroke pain via the Hdac2-Kv1.2 axis in a rat model of hemorrhagic stroke[J]. Neural Regen Res, 2024, 19(12): 2708-2722. doi: 10.4103/NRR.NRR-D-23-01498
    [9] FINNERUP N B, KUNER R, JENSEN T S. Neuropathic pain: from mechanisms to treatment[J]. Physiol Rev, 2021, 101(1): 259-301. doi: 10.1152/physrev.00045.2019
    [10] DAI J, LIU D, LI X, et al. Prediction of hematoma expansion in hypertensive intracerebral hemorrhage by a radiomics nomogram[J]. Pak J Med Sci, 2023, 39(4): 1149-1155.
    [11] YOO J, HYUN S H, LEE J, et al. Prognostic significance of 18 F-FDG PET/CT radiomics in patients with resectable pancreatic ductal adenocarcinoma undergoing curative surgery[J]. Clin Nucl Med, 2024, 49(10): 909-916. doi: 10.1097/RLU.0000000000005363
    [12] YOU C, SU G H, ZHANG X, et al. Multicenter radio-multiomic analysis for predicting breast cancer outcome and unravelling imaging-biological connection[J]. NPJ Precis Oncol, 2024, 8(1): 193. DOI: 10.1038/s41698-024-00666-y.
    [13] 舒存洪, 张姚萍, 张元斌. LASSO回归筛选骨质疏松性椎体压缩骨折患者术后残余疼痛的预测因子及模型构建[J]. 中华全科医学, 2024, 22(11): 1880-1883, 1980. doi: 10.16766/j.cnki.issn.1674-4152.003755

    SHU C H, ZHANG Y P, ZHANG Y B. LASSO regression to identify predictors and model construction for postoperative residual pain in patients with osteoporotic vertebral compression fracture[J]. Chinese Journal of General Practice, 2024, 22(11): 1880-1883, 1980. doi: 10.16766/j.cnki.issn.1674-4152.003755
    [14] CHENG Y, WU B, HUANG J, et al. Research progress on the mechanisms of central post-stroke pain: a review[J]. Cell Mol Neurobiol, 2023, 43(7): 3083-3098. doi: 10.1007/s10571-023-01360-6
    [15] HIRATO M, MIYAGISHIMA T, TAKAHASHI A, et al. Thalamic anterior part of the ventral posterolateral nucleus and central lateral nucleus in the genesis of central post-stroke pain[J]. Acta Neurochir, 2021, 163(8): 2121-2133. doi: 10.1007/s00701-021-04743-0
    [16] ROSNER J, DE ANDRADE D C, DAVIS K D, et al. Central neuropathic pain[J]. Nat Rev Dis Primers, 2023, 9(1): 73. DOI: 10.1038/s41572-023-00484-9.
    [17] LIU P F, WANG Y, XU L, et al. Modulation of itch and pain signals processing in ventrobasal thalamus by thalamic reticular nucleus[J]. iScience, 2022, 25(1): 103625. DOI: 10.1016/j.isci.2021.103625.
    [18] ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4): 542-553. doi: 10.1038/s41593-021-00811-x
    [19] BISSON D A, FLAHERTY M L, SHATIL A S, et al. Original and modified graeb score correlation with intraventricular hemorrhage and clinical outcome prediction in hyperacute intracranial hemorrhage[J]. Stroke, 2020, 51(6): 1696-1702. doi: 10.1161/STROKEAHA.120.029040
    [20] 傅佳, 冯富媛, 欧册华, 等. 中枢卒中后疼痛的神经机制与临床管理策略[J]. 西南医科大学学报, 2024, 47(6): 553-558.

    FU J, FENG F Y, OU C H, et al. Neurological mechanisms and clinical management strategies of central post-stroke Pain[J]. Journal of Southwest Medical University, 2024, 47(6): 553-558.
    [21] YUAN X Q, HU S Y, FAN X C, et al. Central post-stroke pain: advances in clinical and preclinical research[J]. Stroke Vasc Neurol, 2024: svn-2024-003418. DOI: 10.1136/svn-2024-003418.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-24
  • 网络出版日期:  2025-11-17

目录

    /

    返回文章
    返回