The mechanistic study of tanshinone Ⅰ Regulating non-canonical pyroptosis pathway in macrophages
-
摘要:
目的 探讨丹参酮Ⅰ对脂多糖(LPS)诱导的小鼠巨噬细胞J774.1非经典细胞焦亡的干预作用及其潜在机制。 方法 通过Lipofiter转染LPS建立J774.1细胞非经典焦亡模型,采用不同浓度丹参酮Ⅰ干预,筛选40 μmol/L为后续实验浓度。通过LDH释放实验检测细胞毒性;qPCR和Western blotting分析Caspase-11、GSDMD-N、NLRP3、cleaved-Caspase-1及IL-1β的表达;免疫荧光观察细胞焦亡;联合AMPK抑制剂(Dorsomorphin)验证通路机制。 结果 丹参酮Ⅰ在40 μmol/L浓度下对J774.1细胞无明显毒性(P>0.05),干预后细胞毒性从(29.540±2.123)%降至(5.887±1.219)%(P=0.018)。与模型组相比,丹参酮Ⅰ显著抑制Caspase-11、GSDMD-N、NLRP3、Caspase-1、cleaved-Caspase-1及IL-1β表达(P < 0.05),减少焦亡细胞比例,显示其抑制非经典细胞焦亡的作用。同时,丹参酮Ⅰ上调p-AMPK表达,AMPK抑制剂Dorsomorphin可逆转其效应,提示其可能通过激活AMPK通路发挥保护作用。 结论 丹参酮Ⅰ可通过激活AMPK通路抑制LPS诱导的J774.1细胞非经典细胞焦亡,减轻炎症反应,具有潜在的抗炎及保护作用。 Abstract:Objective To investigate the inhibitory effect and mechanism of Tanshinone Ⅰ on non-canonical pyroptosis in LPS-induced murine macrophage J774.1 cells. Methods A non-canonical pyroptosis model was induced in J774.1 cells by LPS transfection using Lipofecter. Cells were treated with various concentrations of Tanshinone Ⅰ, and 40 μmol/L was selected for subsequent experiments based on cytotoxicity screening. LDH release assay was used to assess cell toxicity. The expression levels of Caspase-11, GSDMD-N, NLRP3, cleaved-Caspase-1, and IL-1β were evaluated by qPCR and Western blot. Pyroptotic cells were observed by immunofluorescence. To explore the signaling pathway, the AMPK inhibitor dorsomorphin was co-administered with Tanshinone Ⅰ. Results Tanshinone Ⅰ at a concentration of 40 μmol/L showed no significant toxicity to J774.1 cells (P>0.05). After treatment, cell toxicity decreased from (29.540±2.123) % to (5.887±1.219) % (P=0.018). Compared with the model group, Tanshinone Ⅰ significantly inhibited the expression of Caspase-11, GSDMD-N, NLRP3, Caspase-1, cleaved-Caspase-1, and IL-1β (P < 0.05), and reduced the proportion of pyroptotic cells, indicating its ability to suppress non-canonical pyroptosis. Additionally, Tanshinone Ⅰ upregulated p-AMPK expression, whereas the AMPK inhibitor dorsomorphin reversed this effect, suggesting that its protective role may be mediated through activation of the AMPK pathway. Conclusion Tanshinone Ⅰ can inhibit LPS-induced non-canonical pyroptosis in J774.1 cells by activating the AMPK pathway, thereby alleviating inflammatory responses and exerting anti-inflammatory and cytoprotective effects. -
Key words:
- Tanshinone Ⅰ /
- Non-canonical pyroptosis /
- Macrophage
-
表 1 qRT-PCR所用引物序列
Table 1. Primer sequences used for qRT-PCR
引物 序列(5’-3’) Caspase-11 F:GACTTAGGCTACGATGTGGTGGT R:TGATGACTTTGGGTTTGTCTCGT β-actin F:CTACCTCATGAAGATCCTGACC R:CACAGCTTCTCTTTGATGTCAC 表 2 丹参酮Ⅰ浓度筛选(x ± s)
Table 2. Screening of Tanshinone Ⅰ concentrations(x ± s)
组别 n 浓度(μm/L) 细胞毒性百分比(%) 正常组 3 5.873±0.076 丹参酮Ⅰ 3 10 7.157±0.395 3 20 5.893±0.045 3 40 5.640±0.221 3 60 7.227±0.051a 3 80 6.737±0.121a 3 100 7.777±0.189a F值 15.781 P值 <0.001 注:与正常组比较,aP < 0.05。 表 3 造模后丹参酮Ⅰ浓度筛选(x ± s)
Table 3. Screening of Tanshinone Ⅰ concentrations after modeling(x ± s)
组别 n 浓度(μm/L) 细胞毒性百分比(%) 正常组 3 2.177±0.296 模型组 3 29.540±2.123a 丹参酮Ⅰ 3 10 14.190±6.297 3 20 9.637±2.385b 3 40 5.887±1.219b 3 60 9.540±3.740c 3 80 9.545±2.499b 3 100 9.801±4.080c F值 20.452 P值 < 0.001 注:与正常组比较,aP < 0.01;与模型组比较,bP < 0.01,cP < 0.05。 表 4 造模后不同组细胞毒性分析(x ± s)
Table 4. Analysis of cytotoxicity in different groups after modeling(x ± s)
组别 n 细胞毒性百分比(%) 正常组 3 5.87±0.08 模型组 3 29.54±2.12a 丹参酮Ⅰ 3 14.19±1.22 阳性对照 3 15.01±1.35 AMPK抑制剂 3 28.76±1.98b 丹参酮Ⅰ+AMPK抑制剂 3 20.45±1.67c F值 25.612 P值 < 0.001 注:与正常组比较,aP < 0.01;与丹参酮Ⅰ组比较,bP < 0.01,cP < 0.05。 表 5 各组J774.1细胞Caspase-11 mRNA表达比较(x ± s)
Table 5. Comparison of Caspase-11 mRNA expression among different groups of J774.1 cells(x ± s)
组别 n Caspase-11 mRNA 正常组 3 1.000±0.018 模型组 3 1.944±0.135a 丹参酮Ⅰ 3 1.432±0.059b F值 12.345 P值 < 0.001 注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。 表 6 各组J774.1细胞Caspase-11、GSDMD、GSDMD-N蛋白表达比较(x ± s)
Table 6. Comparison of Caspase-11, GSDMD, and GSDMD-N protein expression among different groups of J774.1 cells(x ± s)
组别 n Caspase-11 GSDMD GSDMD-N 正常组 3 1.000±0.223 1.000±0.254 1.000±0.171 模型组 3 1.673±0.137a 1.316±0.137a 1.888±0.122a 丹参酮Ⅰ 3 1.188±0.115b 1.233±0.073b 1.466±0.147b 阳性对照组 3 1.120±0.113 1.131±0.124 1.124±0.232 F值 18.245 12.561 22.783 P值 < 0.001 < 0.005 < 0.001 注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。 表 7 各组J774.1细胞NLRP3、Caspase-1、cleaved-Caspase-1、IL-1β蛋白表达比较(x ± s)
Table 7. Comparison of protein expression of NLRP3, Caspase-1, cleaved-Caspase-1, and IL-1β among different groups of J774.1 cells (x ± s)
组别 n NLRP3 Caspase-1 cleaved-Caspase-1 IL-1β 正常组 3 1.000±0.160 1.000±0.119 1.000±0.164 1.000±0.118 模型组 3 1.836±0.186a 1.429±0.057a 1.565±0.109a 1.492±0.061a 丹参酮Ⅰ 3 1.012±0.327b 1.097±0.088b 1.063±0.069b 1.261±0.029b 阳性对照组 3 1.120±0.131 1.093±0.039 1.084±0.224 1.187±0.213 F值 16.892 28.454 35.675 24.327 P值 < 0.001 < 0.001 < 0.001 < 0.001 注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。 表 8 各组J774.1细胞焦亡百分比(x ± s)
Table 8. The percentage of pyroptosis among different groups of J774.1 cells(x ± s)
组别 n 细胞焦亡百分比(%) 正常组 3 0.02±0.01 模型组 3 0.83±0.05a 丹参酮Ⅰ 3 0.38±0.04b 阳性对照 3 0.22±0.03b F值 279.529 P值 < 0.001 注:与正常组比较,aP < 0.001;与模型组比较,bP < 0.01。 表 9 各组J774.1细胞AMPK、P-AMPK蛋白表达比较(x ± s)
Table 9. Comparison of AMPK and P-AMPK protein expression among different groups of J774.1 cells(x ± s)
组别 n AMPK p-AMPK 正常组 3 1.000±0.056 1.000±0.065 模型组 3 0.936±0.024 0.815±0.028a 丹参酮Ⅰ 3 1.047±0.026b 1.035±0.043b F值 3.451 42.786 P值 0.046 < 0.001 注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。 -
[1] LI Q, ZHANG F, WANG H, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase-11 dependent non-canonical pyroptosis[J]. Int J Biol Sci, 2024, 20: 1413-1435. doi: 10.7150/ijbs.91284 [2] CYR B, HADAD R, KEANE R W, et al. The role of non-canonical and canonical inflammasomes in inflammaging[J]. Front Mol Neurosci, 2022, 15: 974742. DOI: 10.3389/fnmol.2022.774014. [3] YANG W, TAO K, ZHANG P, et al. Maresin 1 protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting macrophage pyroptosis and inflammatory response[J]. Biochem Pharmacol, 2022, 195: 114863. DOI: 10.1016/j.bcp.2021.114863. [4] TANG Y, WANG X, LI Z, et al. Heparin prevents Caspase-11-dependent septic lethality independent of anticoagulant properties[J]. Immunity, 2021, 54(3): 454-467. doi: 10.1016/j.immuni.2021.01.007 [5] SUN P, ZHONG J, LIAO H, et al. Hepatocytes are resistant to cell death from canonical and non-canonical inflammasome-activated pyroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 739-757. doi: 10.1016/j.jcmgh.2021.11.009 [6] MORETTI J, JIA B, HUTCHINS Z, et al. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome[J]. Nat Immunol, 2022, 23(2): 705-717. [7] BIASIZZO M, TRSTENJAK-PREBANDA M, DOLINAR K, et al. Cystatin C deficiency increases LPS-induced sepsis and NLRP3 inflammasome activation in mice[J]. Cells, 2021, 10(8): 2071-2085. doi: 10.3390/cells10082071 [8] ENGELMANN C, HABTESION A, HASSAN M, et al. Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF[J]. J Hepatol, 2022, 77(5): 1325-1338. doi: 10.1016/j.jhep.2022.07.006 [9] HOU W, WEI X, LIANG J, et al. HMGB1-induced hepatocyte pyroptosis expanding inflammatory responses contributes to the pathogenesis of acute-on-chronic liver failure (ACLF)[J]. J Inflamm Res, 2021, 14: 7295-7313. doi: 10.2147/JIR.S336626 [10] WU Y T, XIE L P, HUA Y, et al. Tanshinone Ⅰ inhibits oxidative stress-induced cardiomyocyte injury by modulating Nrf2 signaling[J]. Front Pharmacol, 2021, 12: 644116. DOI: 10.3389/fphar.2021.644116. [11] HUANG P, JIN W, XU S, et al. Optimization of smashing tissue and ultrasonic extraction of tanshinones and their neuroprotective effect on cerebral ischemia/reperfusion injury by inhibiting parthanatos[J]. Food Funct, 2022, 13(18): 9658-9673. doi: 10.1039/D2FO01902G [12] WANG Z, PETERS R J. Tanshinones: leading the way into Lamiaceae labdane-related diterpenoid biosynthesis[J]. Curr Opin Plant Biol, 2022, 66: 102189. DOI: 10.1016/j.pbi.2022.102189. [13] PRAJAPATI R, PARK S E, SEONG S H, et al. Monoamine oxidase inhibition by major tanshinones from salvia miltiorrhiza and selective muscarinic acetylcholine M4 receptor antagonism by tanshinone Ⅰ[J]. Biomolecules, 2021, 11(7): 1001-1015. doi: 10.3390/biom11071001 [14] KE L, ZHONG C, CHEN Z, et al. Tanshinone Ⅰ: pharmacological activities, molecular mechanisms against diseases and future perspectives[J]. Phytomedicine, 2023, 110: 154632. DOI: 10.1016/j.phymed.2022.154632. [15] ZHAO J, LIU H, HONG Z, et al. Tanshinone Ⅰ specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC[J]. Mol Med, 2023, 29(1): 84-95. doi: 10.1186/s10020-023-00671-0 [16] XIE D, OUYANG S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure[J]. Front Immunol, 2023, 14: 1279264. DOI: 10.3389/fimmu.2023.1279264. [17] 肖燕婷, 黄淡霞, 黄凤蕊, 等. 丹参酮ⅡA对D-半乳糖胺诱导的大鼠急性肝衰竭保护作用机制研究[J]. 实用临床医药杂志, 2025, 29(7): 58-63, 70.XIAO Y T, HUANG D X, HUANG F R, et al. Protective mechanism of tanshinone on acute liver failure induced by D-galactosamine in rats[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 58-63, 70. [18] YANG T, WANG H, WANG X, et al. The dual role of innate immune response in acetaminophen-induced liver injury[J]. Biology, 2022, 11(3): 412. DOI: 10.3390/biology11071057. [19] NI L, CHEN D, ZHAO Y, et al. Unveiling the flames: macrophage pyroptosis and its crucial role in liver diseases[J]. Front Immunol, 2024, 15: 1338125. DOI: 10.3389/fimmu.2024.1338125. [20] XU W, CHE Y, ZHANG Q, et al. Apaf-1 pyroptosome senses mitochondrial permeability transition[J]. Cell Metab, 2021, 33(2): 424-436. doi: 10.1016/j.cmet.2020.11.018 [21] HU C, HE X, ZHANG H, et al. Tanshinone Ⅰ limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice[J]. Mol Immunol, 2024, 173: 88-98. doi: 10.1016/j.molimm.2024.07.007 [22] WU S, ZHAO K, WANG J, et al. Recent advances of tanshinone in regulating autophagy for medicinal research[J]. Front Pharmacol, 2023, 14: 1180056. DOI: 10.3389/fphar.2022.1059360. -
下载: