留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丹参酮Ⅰ调控巨噬细胞非经典焦亡通路机制研究

郑逸豪 陈月 赵凯迪 杨宇 马重阳 张秋云

郑逸豪, 陈月, 赵凯迪, 杨宇, 马重阳, 张秋云. 丹参酮Ⅰ调控巨噬细胞非经典焦亡通路机制研究[J]. 中华全科医学, 2025, 23(9): 1480-1483. doi: 10.16766/j.cnki.issn.1674-4152.004159
引用本文: 郑逸豪, 陈月, 赵凯迪, 杨宇, 马重阳, 张秋云. 丹参酮Ⅰ调控巨噬细胞非经典焦亡通路机制研究[J]. 中华全科医学, 2025, 23(9): 1480-1483. doi: 10.16766/j.cnki.issn.1674-4152.004159
ZHENG Yihao, CHEN Yue, ZHAO Kaidi, YANG Yu, MA Chongyang, ZHANG Qiuyun. The mechanistic study of tanshinone Ⅰ Regulating non-canonical pyroptosis pathway in macrophages[J]. Chinese Journal of General Practice, 2025, 23(9): 1480-1483. doi: 10.16766/j.cnki.issn.1674-4152.004159
Citation: ZHENG Yihao, CHEN Yue, ZHAO Kaidi, YANG Yu, MA Chongyang, ZHANG Qiuyun. The mechanistic study of tanshinone Ⅰ Regulating non-canonical pyroptosis pathway in macrophages[J]. Chinese Journal of General Practice, 2025, 23(9): 1480-1483. doi: 10.16766/j.cnki.issn.1674-4152.004159

丹参酮Ⅰ调控巨噬细胞非经典焦亡通路机制研究

doi: 10.16766/j.cnki.issn.1674-4152.004159
基金项目: 

国家自然科学基金项目 82074237

详细信息
    通讯作者:

    张秋云,E-mail: zhangqiuyun8202@aliyun.com

  • 中图分类号: R-332

The mechanistic study of tanshinone Ⅰ Regulating non-canonical pyroptosis pathway in macrophages

  • 摘要:   目的  探讨丹参酮Ⅰ对脂多糖(LPS)诱导的小鼠巨噬细胞J774.1非经典细胞焦亡的干预作用及其潜在机制。  方法  通过Lipofiter转染LPS建立J774.1细胞非经典焦亡模型,采用不同浓度丹参酮Ⅰ干预,筛选40 μmol/L为后续实验浓度。通过LDH释放实验检测细胞毒性;qPCR和Western blotting分析Caspase-11、GSDMD-N、NLRP3、cleaved-Caspase-1及IL-1β的表达;免疫荧光观察细胞焦亡;联合AMPK抑制剂(Dorsomorphin)验证通路机制。  结果  丹参酮Ⅰ在40 μmol/L浓度下对J774.1细胞无明显毒性(P>0.05),干预后细胞毒性从(29.540±2.123)%降至(5.887±1.219)%(P=0.018)。与模型组相比,丹参酮Ⅰ显著抑制Caspase-11、GSDMD-N、NLRP3、Caspase-1、cleaved-Caspase-1及IL-1β表达(P < 0.05),减少焦亡细胞比例,显示其抑制非经典细胞焦亡的作用。同时,丹参酮Ⅰ上调p-AMPK表达,AMPK抑制剂Dorsomorphin可逆转其效应,提示其可能通过激活AMPK通路发挥保护作用。  结论  丹参酮Ⅰ可通过激活AMPK通路抑制LPS诱导的J774.1细胞非经典细胞焦亡,减轻炎症反应,具有潜在的抗炎及保护作用。

     

  • 图  1  各组J774.1细胞Caspase-11、GSDMD、GSDMD-N蛋白表达免疫印迹

    Figure  1.  Western blot analysis of Caspase-11, GSDMD, and GSDMD-N protein expression in J774.1 cells of each group

    图  2  各组J774.1细胞NLRP3、Caspase-1、cleaved-Caspase-1、IL-1β蛋白表达免疫印迹

    Figure  2.  Western blot analysis of NLRP3, Caspase-1, cleaved-Caspase-1, and IL-1β protein expression in J774.1 cells of each group

    图  3  各组J774.1细胞焦亡百分比(放大倍数200×)

    Figure  3.  Percentage of pyroptosis in J774.1 cells in each group. Magnification: 200×

    图  4  各组J774.1细胞AMPK、P-AMPK蛋白表达免疫印迹

    Figure  4.  Immunoblotting of AMPK and P-AMPK protein expression in J774.1 cells in each group

    图  5  各组J774.1细胞AMPK、P-AMPK蛋白表达免疫印迹

    Figure  5.  Immunoblotting of AMPK and P-AMPK protein expression in J774.1 cells in each group

    表  1  qRT-PCR所用引物序列

    Table  1.   Primer sequences used for qRT-PCR

    引物 序列(5’-3’)
    Caspase-11 F:GACTTAGGCTACGATGTGGTGGT
    R:TGATGACTTTGGGTTTGTCTCGT
    β-actin F:CTACCTCATGAAGATCCTGACC
    R:CACAGCTTCTCTTTGATGTCAC
    下载: 导出CSV

    表  2  丹参酮Ⅰ浓度筛选(x ± s)

    Table  2.   Screening of Tanshinone Ⅰ concentrations(x ± s)

    组别 n 浓度(μm/L) 细胞毒性百分比(%)
    正常组 3 5.873±0.076
    丹参酮Ⅰ 3 10 7.157±0.395
    3 20 5.893±0.045
    3 40 5.640±0.221
    3 60 7.227±0.051a
    3 80 6.737±0.121a
    3 100 7.777±0.189a
    F 15.781
    P <0.001
    注:与正常组比较,aP < 0.05。
    下载: 导出CSV

    表  3  造模后丹参酮Ⅰ浓度筛选(x ± s)

    Table  3.   Screening of Tanshinone Ⅰ concentrations after modeling(x ± s)

    组别 n 浓度(μm/L) 细胞毒性百分比(%)
    正常组 3 2.177±0.296
    模型组 3 29.540±2.123a
    丹参酮Ⅰ 3 10 14.190±6.297
    3 20 9.637±2.385b
    3 40 5.887±1.219b
    3 60 9.540±3.740c
    3 80 9.545±2.499b
    3 100 9.801±4.080c
    F 20.452
    P < 0.001
    注:与正常组比较,aP < 0.01;与模型组比较,bP < 0.01,cP < 0.05。
    下载: 导出CSV

    表  4  造模后不同组细胞毒性分析(x ± s)

    Table  4.   Analysis of cytotoxicity in different groups after modeling(x ± s)

    组别 n 细胞毒性百分比(%)
    正常组 3 5.87±0.08
    模型组 3 29.54±2.12a
    丹参酮Ⅰ 3 14.19±1.22
    阳性对照 3 15.01±1.35
    AMPK抑制剂 3 28.76±1.98b
    丹参酮Ⅰ+AMPK抑制剂 3 20.45±1.67c
    F 25.612
    P < 0.001
    注:与正常组比较,aP < 0.01;与丹参酮Ⅰ组比较,bP < 0.01,cP < 0.05。
    下载: 导出CSV

    表  5  各组J774.1细胞Caspase-11 mRNA表达比较(x ± s)

    Table  5.   Comparison of Caspase-11 mRNA expression among different groups of J774.1 cells(x ± s)

    组别 n Caspase-11 mRNA
    正常组 3 1.000±0.018
    模型组 3 1.944±0.135a
    丹参酮Ⅰ 3 1.432±0.059b
    F 12.345
    P < 0.001
    注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。
    下载: 导出CSV

    表  6  各组J774.1细胞Caspase-11、GSDMD、GSDMD-N蛋白表达比较(x ± s)

    Table  6.   Comparison of Caspase-11, GSDMD, and GSDMD-N protein expression among different groups of J774.1 cells(x ± s)

    组别 n Caspase-11 GSDMD GSDMD-N
    正常组 3 1.000±0.223 1.000±0.254 1.000±0.171
    模型组 3 1.673±0.137a 1.316±0.137a 1.888±0.122a
    丹参酮Ⅰ 3 1.188±0.115b 1.233±0.073b 1.466±0.147b
    阳性对照组 3 1.120±0.113 1.131±0.124 1.124±0.232
    F 18.245 12.561 22.783
    P < 0.001 < 0.005 < 0.001
    注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。
    下载: 导出CSV

    表  7  各组J774.1细胞NLRP3、Caspase-1、cleaved-Caspase-1、IL-1β蛋白表达比较(x ± s)

    Table  7.   Comparison of protein expression of NLRP3, Caspase-1, cleaved-Caspase-1, and IL-1β among different groups of J774.1 cells (x ± s)

    组别 n NLRP3 Caspase-1 cleaved-Caspase-1 IL-1β
    正常组 3 1.000±0.160 1.000±0.119 1.000±0.164 1.000±0.118
    模型组 3 1.836±0.186a 1.429±0.057a 1.565±0.109a 1.492±0.061a
    丹参酮Ⅰ 3 1.012±0.327b 1.097±0.088b 1.063±0.069b 1.261±0.029b
    阳性对照组 3 1.120±0.131 1.093±0.039 1.084±0.224 1.187±0.213
    F 16.892 28.454 35.675 24.327
    P < 0.001 < 0.001 < 0.001 < 0.001
    注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。
    下载: 导出CSV

    表  8  各组J774.1细胞焦亡百分比(x ± s)

    Table  8.   The percentage of pyroptosis among different groups of J774.1 cells(x ± s)

    组别 n 细胞焦亡百分比(%)
    正常组 3 0.02±0.01
    模型组 3 0.83±0.05a
    丹参酮Ⅰ 3 0.38±0.04b
    阳性对照 3 0.22±0.03b
    F 279.529
    P < 0.001
    注:与正常组比较,aP < 0.001;与模型组比较,bP < 0.01。
    下载: 导出CSV

    表  9  各组J774.1细胞AMPK、P-AMPK蛋白表达比较(x ± s)

    Table  9.   Comparison of AMPK and P-AMPK protein expression among different groups of J774.1 cells(x ± s)

    组别 n AMPK p-AMPK
    正常组 3 1.000±0.056 1.000±0.065
    模型组 3 0.936±0.024 0.815±0.028a
    丹参酮Ⅰ 3 1.047±0.026b 1.035±0.043b
    F 3.451 42.786
    P 0.046 < 0.001
    注:与正常组比较,aP < 0.05;与模型组比较,bP < 0.05。
    下载: 导出CSV
  • [1] LI Q, ZHANG F, WANG H, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase-11 dependent non-canonical pyroptosis[J]. Int J Biol Sci, 2024, 20: 1413-1435. doi: 10.7150/ijbs.91284
    [2] CYR B, HADAD R, KEANE R W, et al. The role of non-canonical and canonical inflammasomes in inflammaging[J]. Front Mol Neurosci, 2022, 15: 974742. DOI: 10.3389/fnmol.2022.774014.
    [3] YANG W, TAO K, ZHANG P, et al. Maresin 1 protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting macrophage pyroptosis and inflammatory response[J]. Biochem Pharmacol, 2022, 195: 114863. DOI: 10.1016/j.bcp.2021.114863.
    [4] TANG Y, WANG X, LI Z, et al. Heparin prevents Caspase-11-dependent septic lethality independent of anticoagulant properties[J]. Immunity, 2021, 54(3): 454-467. doi: 10.1016/j.immuni.2021.01.007
    [5] SUN P, ZHONG J, LIAO H, et al. Hepatocytes are resistant to cell death from canonical and non-canonical inflammasome-activated pyroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 739-757. doi: 10.1016/j.jcmgh.2021.11.009
    [6] MORETTI J, JIA B, HUTCHINS Z, et al. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome[J]. Nat Immunol, 2022, 23(2): 705-717.
    [7] BIASIZZO M, TRSTENJAK-PREBANDA M, DOLINAR K, et al. Cystatin C deficiency increases LPS-induced sepsis and NLRP3 inflammasome activation in mice[J]. Cells, 2021, 10(8): 2071-2085. doi: 10.3390/cells10082071
    [8] ENGELMANN C, HABTESION A, HASSAN M, et al. Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF[J]. J Hepatol, 2022, 77(5): 1325-1338. doi: 10.1016/j.jhep.2022.07.006
    [9] HOU W, WEI X, LIANG J, et al. HMGB1-induced hepatocyte pyroptosis expanding inflammatory responses contributes to the pathogenesis of acute-on-chronic liver failure (ACLF)[J]. J Inflamm Res, 2021, 14: 7295-7313. doi: 10.2147/JIR.S336626
    [10] WU Y T, XIE L P, HUA Y, et al. Tanshinone Ⅰ inhibits oxidative stress-induced cardiomyocyte injury by modulating Nrf2 signaling[J]. Front Pharmacol, 2021, 12: 644116. DOI: 10.3389/fphar.2021.644116.
    [11] HUANG P, JIN W, XU S, et al. Optimization of smashing tissue and ultrasonic extraction of tanshinones and their neuroprotective effect on cerebral ischemia/reperfusion injury by inhibiting parthanatos[J]. Food Funct, 2022, 13(18): 9658-9673. doi: 10.1039/D2FO01902G
    [12] WANG Z, PETERS R J. Tanshinones: leading the way into Lamiaceae labdane-related diterpenoid biosynthesis[J]. Curr Opin Plant Biol, 2022, 66: 102189. DOI: 10.1016/j.pbi.2022.102189.
    [13] PRAJAPATI R, PARK S E, SEONG S H, et al. Monoamine oxidase inhibition by major tanshinones from salvia miltiorrhiza and selective muscarinic acetylcholine M4 receptor antagonism by tanshinone Ⅰ[J]. Biomolecules, 2021, 11(7): 1001-1015. doi: 10.3390/biom11071001
    [14] KE L, ZHONG C, CHEN Z, et al. Tanshinone Ⅰ: pharmacological activities, molecular mechanisms against diseases and future perspectives[J]. Phytomedicine, 2023, 110: 154632. DOI: 10.1016/j.phymed.2022.154632.
    [15] ZHAO J, LIU H, HONG Z, et al. Tanshinone Ⅰ specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC[J]. Mol Med, 2023, 29(1): 84-95. doi: 10.1186/s10020-023-00671-0
    [16] XIE D, OUYANG S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure[J]. Front Immunol, 2023, 14: 1279264. DOI: 10.3389/fimmu.2023.1279264.
    [17] 肖燕婷, 黄淡霞, 黄凤蕊, 等. 丹参酮ⅡA对D-半乳糖胺诱导的大鼠急性肝衰竭保护作用机制研究[J]. 实用临床医药杂志, 2025, 29(7): 58-63, 70.

    XIAO Y T, HUANG D X, HUANG F R, et al. Protective mechanism of tanshinone on acute liver failure induced by D-galactosamine in rats[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 58-63, 70.
    [18] YANG T, WANG H, WANG X, et al. The dual role of innate immune response in acetaminophen-induced liver injury[J]. Biology, 2022, 11(3): 412. DOI: 10.3390/biology11071057.
    [19] NI L, CHEN D, ZHAO Y, et al. Unveiling the flames: macrophage pyroptosis and its crucial role in liver diseases[J]. Front Immunol, 2024, 15: 1338125. DOI: 10.3389/fimmu.2024.1338125.
    [20] XU W, CHE Y, ZHANG Q, et al. Apaf-1 pyroptosome senses mitochondrial permeability transition[J]. Cell Metab, 2021, 33(2): 424-436. doi: 10.1016/j.cmet.2020.11.018
    [21] HU C, HE X, ZHANG H, et al. Tanshinone Ⅰ limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice[J]. Mol Immunol, 2024, 173: 88-98. doi: 10.1016/j.molimm.2024.07.007
    [22] WU S, ZHAO K, WANG J, et al. Recent advances of tanshinone in regulating autophagy for medicinal research[J]. Front Pharmacol, 2023, 14: 1180056. DOI: 10.3389/fphar.2022.1059360.
  • 加载中
图(5) / 表(9)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 网络出版日期:  2025-11-17

目录

    /

    返回文章
    返回