留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系统性炎症综合指数与慢性肾脏病之间关系的横断面研究

伊世华 张强 路秀云 王新伟 王冰

伊世华, 张强, 路秀云, 王新伟, 王冰. 系统性炎症综合指数与慢性肾脏病之间关系的横断面研究[J]. 中华全科医学, 2025, 23(9): 1516-1521. doi: 10.16766/j.cnki.issn.1674-4152.004168
引用本文: 伊世华, 张强, 路秀云, 王新伟, 王冰. 系统性炎症综合指数与慢性肾脏病之间关系的横断面研究[J]. 中华全科医学, 2025, 23(9): 1516-1521. doi: 10.16766/j.cnki.issn.1674-4152.004168
YI Shihua, ZHANG Qiang, LU Xiuyun, WANG Xinwei, WANG Bing. A cross-sectional study on the relationship between the comprehensive index of systemic inflammation and chronic kidney disease[J]. Chinese Journal of General Practice, 2025, 23(9): 1516-1521. doi: 10.16766/j.cnki.issn.1674-4152.004168
Citation: YI Shihua, ZHANG Qiang, LU Xiuyun, WANG Xinwei, WANG Bing. A cross-sectional study on the relationship between the comprehensive index of systemic inflammation and chronic kidney disease[J]. Chinese Journal of General Practice, 2025, 23(9): 1516-1521. doi: 10.16766/j.cnki.issn.1674-4152.004168

系统性炎症综合指数与慢性肾脏病之间关系的横断面研究

doi: 10.16766/j.cnki.issn.1674-4152.004168
基金项目: 

黑龙江省卫生健康委科研课题 2022212101102

详细信息
    通讯作者:

    王冰,E-mail:940066276@qq.com

  • 中图分类号: R692

A cross-sectional study on the relationship between the comprehensive index of systemic inflammation and chronic kidney disease

  • 摘要:   目的  慢性肾脏病(CKD)是一种以肾功能逐渐减退为特征的疾病,影响患者的生活质量并增加死亡风险,已成为公共卫生负担。系统性炎症综合指数(AISI)是一种血液综合性炎症指标,与CKD之间的关系尚未得到验证,本研究旨在评估AISI与CKD之间的关系。  方法  本研究提取NHANES(2009—2018年)的数据,纳入成人参与者9 557例,其中CKD患者912例(9.54%)。纳入性别、年龄、种族、教育、收入支出比、BMI、吸烟、饮酒、高血压、糖尿病、代谢综合征、心血管疾病及实验室检验指标等协变量,评估无CKD和CKD参与者的差异,通过多元logistic回归模型评估AISI与CKD风险的关系,通过限制性立方样条分析线性和非线性关系,通过ROC、DCA、校准曲线评估模型预测能力,并进行亚组分析。  结果  CKD患者的AISI高于无CKD参与者[251.14(170.39,403.65)vs. 236.05(157.08,363.51),P=0.004];AISI较高的参与者患CKD的风险显著增加(OR=1.112,95% CI:1.040~1.188,P=0.002);AISI与CKD患病风险呈正相关线性关系(P for overall < 0.001;P for nonlinear=0.465),当AISI超过中位数值(237.30)时,CKD患病风险显著上升;构建的最终模型稳健,AUC为0.737(95% CI:0.718~0.756,P < 0.001);亚组分析表明性别在AISI与CKD风险关联中可能有调节作用。  结论  AISI作为炎症综合指标,与CKD发生风险相关,在AISI较高的人群中风险更大。该指标可能作为CKD风险筛查的有效工具,为高危人群的早期预警提供支持。

     

  • 图  1  限制性立方样条模型拟合曲线和风险模型评价

    Figure  1.  Restricted cubic spline model fitting curve and risk model evaluation

    表  1  参与者临床特征比较

    Table  1.   Comparison of clinical characteristics of participants

    项目 总数(n=9 557) 无CKD组(n=8 645) CKD组(n=912) 统计量 P
    年龄[M(P25, P75), 岁] 39.00(29.00,49.00) 39.00(29.00,49.00) 46.00(34.00,54.00) 8.242a < 0.001
    性别[例(%)] 15.126b < 0.001
      男性 4 691(50.02) 4 305(50.76) 386(41.53)
      女性 4 866(49.98) 4 340(49.24) 526(58.47)
    种族[例(%)] 20.738b < 0.001
      墨西哥裔 1 388(10.11) 1 265(10.06) 123(10.72)
      非西班牙裔白人 3 462(62.65) 3 186(63.46) 276(53.38)
      非西班牙裔黑人 1 946(10.73) 1 670(10.04) 276(18.68)
      其他种族 2 761(16.50) 2 524(16.44) 237(17.21)
    教育年限[例(%)] 7.606b < 0.001
      <9年 1 615(12.11) 1 413(11.68) 202(17.08)
      9~11年 2 144(21.98) 1 931(21.84) 213(23.66)
      >11年 5 798(65.90) 5 301(66.48) 497(59.26)
    收入支出比[M(P25, P75)] 2.89(1.37,5.00) 2.96(1.42,5.00) 2.24(1.06,4.48) -4.699a < 0.001
    BMI[M(P25, P75)] 27.70(23.90, 32.30) 27.60(23.90, 32.00) 29.60(24.70, 35.20) 4.886a < 0.001
    饮酒[例(%)] 4 028(45.47) 3 659(45.64) 369(43.59) 0.704b 0.400
    吸烟[例(%)] 3 756(41.09) 3 356(40.62) 400(46.53) 5.907b 0.018
    合并症[例(%)]
      高血压 3 867(38.81) 3 292(36.99) 575(59.68) 73.430b < 0.001
      糖尿病 2 480(24.55) 2 122(23.68) 358(34.42) 26.947b < 0.001
      代谢综合征 1362(13.80) 1157(13.33) 205(19.24) 14.131b < 0.001
      心血管疾病 55(4.99) 436(4.45) 115(11.25) 68.720b < 0.001
    实验室指标[M(P25, P75)]
      葡萄糖(mg/dL) 2.80(2.50,3.10) 2.80(2.50,3.10) 2.90(2.61,3.20) 7.846a < 0.001
      总胆固醇(mg/dL) 91.00(84.00,99.00) 90.00(84.00,98.00) 93.00(85.00,110.00) 4.738a < 0.001
      低密度脂蛋白(mg/dL) 126.00(110.00,144.00) 125.00(110.00,143.00) 131.00(115.00,153.00) 4.980a < 0.001
      甘油三酯(mg/dL) 7.10(6.80,7.40) 7.10(6.80,7.40) 7.20(6.90,7.50) 2.778a 0.007
      高密度脂蛋白(mg/dL) 189.00(165.00,216.00) 189.00(164.00,216.00) 196.00(167.00,226.00) 3.222a 0.002
      血肌酐(mg/dL) 0.83(0.71,0.97) 0.83(0.71,0.96) 0.84(0.69,1.09) 2.606a 0.011
      肾小球滤过率(mL/min) 99.86(87.43,110.76) 100.20(88.43,111.04) 96.49(61.13,108.92) -6.888a < 0.001
      尿酸(mg/dL) 5.20(4.40,6.20) 5.20(4.30,6.10) 5.60(4.40,6.70) 4.280a < 0.001
    AISI[M(P25, P75)] 237.29(157.50,367.28) 236.05(157.08,363.51) 251.14(170.39,403.65) 2.958a 0.004
    AISI四分位数组[例(%)] 2.863b 0.043
      Q1(<157.50) 2 389(21.97) 2 188(22.26) 201(18.69)
      Q2(157.50~237.30) 2 389(25.86) 2 179(25.95) 210(24.80)
      Q3(237.30~367.29) 2 389(25.71) 2 175(25.86) 214(24.10)
      Q4(>367.29) 2 390(26.46) 2 103(25.94) 287(32.42)
    注:aZ值,b为χ2值。
    下载: 导出CSV

    表  2  CKD参与者的加权多元logistic回归模型

    Table  2.   Weighted multiple logistic regression model for CKD participants

    特征 模型1 模型2 模型3
    OR(95% CI) P OR(95% CI) P OR(95% CI) P
    AISI 1.198(1.128~1.269) < 0.001 1.217(1.146~1.291) < 0.001 1.112(1.040~1.188) 0.002
    AISI四分位数
      Q2 1.049(0.857~1.284) 0.642 1.156(0.939~1.421) 0.171 1.116(0.898~1.387) 0.321
      Q3 1.071(0.876~1.310) 0.504 1.174(0.954~1.445) 0.130 1.079(0.867~1.342) 0.494
      Q4 1.486(1.229~1.796) < 0.001 1.626(1.333~1.984) < 0.001 1.279(1.032~1.584) 0.024
    P for trend < 0.001 < 0.001 0.039
    注:AISI四分位数分组以Q1为参照。模型1未调整协变量;模型2调整了性别、年龄、种族、教育、收入支出比和BMI;模型3调整了性别、年龄、种族、教育、收入支出比、BMI、饮酒、吸烟、高血压、糖尿病、代谢综合征、心血管疾病、葡萄糖、总胆固醇、低密度脂蛋白、甘油三酯、高密度脂蛋白、尿酸、血肌酐、肾小球滤过率。
    下载: 导出CSV

    表  3  亚组分析情况

    Table  3.   Subgroup analysis situation

    亚组 OR (95% CI) P P for interaction
    Overall 1.172(1.091~1.250) < 0.001
    年龄 0.828
      < 60岁 1.153(1.032~1.296) 0.013
      ≥60岁 1.175(1.078~1.286) 0.001
    性别 0.009
      男性 1.280(1.171~1.403) < 0.001
      女性 1.074(0.962~1.185) 0.223
    下载: 导出CSV
  • [1] DEN HARTOGH D J, TSIANI E. Health benefits of resveratrol in kidney disease: evidence from in vitro and in vivo studies[J]. Nutrients, 2019, 11(7): 1624. DOI: 10.3390/nu11071624.
    [2] YAMAMOTO H, ICHIKAWA Y, HIRANO S I, et al. Molecular hydrogen as a novel protective agent against pre-symptomatic diseases[J]. Int J Mol Sci, 2021, 22(13): 7211. DOI: 10.3390/ijms22137211.
    [3] KANDURI S R, VELEZ J C Q. Kidney dysfunction in the setting of liver failure: core curriculum 2024[J]. Am J Kidney Dis, 2024, 83(3): 386-401.
    [4] GALLO-BERNAL S, PATINO-JARAMILLO N, CALIXTO C A, et al. Nephrogenic systemic fibrosis in patients with chronic kidney disease after the use of gadolinium-based contrast agents: a review for the cardiovascular imager[J]. Diagnostics(Basel), 2022, 12(8): 1816. DOI: 10.3390/diagnostics12081816.
    [5] GOODBRED A J, LANGAN R C. Chronic kidney disease: prevention, diagnosis, and treatment[J]. Am Fam Physician, 2023, 108(6): 554-561.
    [6] 范晶, 黄冠文, 包继文, 等. IgA肾病预后相关危险因素分析[J]. 中华全科医学, 2022, 20(5): 731-734, 755. doi: 10.16766/j.cnki.issn.1674-4152.002441

    FAN J, HUANG G W, BAO J W, et al. Analysis of risk factors for the prognosis of IgA nephropathy[J]. Chinese Journal of General Practice, 2022, 20(5): 731-734, 755. doi: 10.16766/j.cnki.issn.1674-4152.002441
    [7] SATARUG S, GOBE G C, VESEY D A. Multiple targets of toxicity in environmental exposure to low-dose cadmium[J]. Toxics, 2022, 10(8): 472. DOI: 10.3390/toxics10080472.
    [8] WANG B, LI Z S, MAO L F, et al. Hydrogen: a novel treatment strategy in kidney disease[J]. Kidney Dis(Basel), 2022, 8(2): 126-136.
    [9] ARIENTI C, LAZZARINI S G, POLLINI E, et al. Effectiveness of rehabilitation interventions in adults with multi-organ dysfunction syndrome: a rapid review[J]. J Rehabil Med, 2021, 53(8): jrm00221. DOI: 10.2340/16501977-2846.
    [10] YIN X S, ZOU J M, YANG J. The association between the aggregate index of systemic inflammation and risk of rheumatoid arthritis: retrospective analysis of NHANES 1999-2018[J]. Front Med(Lausanne), 2024, 11: 1446160. DOI: 10.3389/fmed.2024.1446160.
    [11] XIU J M, LIN X Q, CHEN Q S, et al. The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension[J]. Front Cardiovasc Med, 2023, 10: 1163900. DOI: 10.3389/fcvm.2023.1163900.
    [12] TARLE M, RAGUŽ M, LUK$\bar{\mathtt{S}}$IĆ I. A comparative study of the aggregate index of systemic inflammation (AISI) and c-reactive protein (CRP) in predicting odontogenic abscesses severity: a novel approach to assessing immunoinflammatory response[J]. Diagnostics(Basel), 2024, 14(19): 2163. DOI: 10.3390/diagnostics14192163.
    [13] CAO C, LI C Y, LI X T, et al. Association of systemic immune-inflammation index (SII) and aggregate index of systemic inflammation (AISI) with thyroid nodules in patients with type 2 diabetes mellitus: a retrospective study[J]. BMC Endocr Disord, 2023, 23(1): 251. DOI: 10.1186/s12902-023-01509-w.
    [14] JIANG Y, LUO B L, LU W, et al. Association between the aggregate index of systemic inflammation and clinical outcomes in patients with acute myocardial infarction: a retrospective study[J]. J Inflamm Res, 2024, 17: 7057-7067. doi: 10.2147/JIR.S481515
    [15] QIU S H, JIANG Q, LI Y. The association between pan-immune-inflammation value and chronic obstructive pulmonary disease: data from NHANES 1999-2018[J]. Front Physiol, 2024, 15: 1440264. DOI: 10.3389/fphys.2024.1440264.
    [16] XU J P, PENG X Q, GUO L H, et al. The associations of the triglyceride-glucose index and its combination with blood pressure on cardiovascular and all-cause mortality in hypertension: a national study[J]. Front Endocrinol(Lausanne), 2024, 15: 1469055. DOI: 10.3389/fendo.2024.1469055.
    [17] CAO Y L, LIN J H, HAMMES H P, et al. Flavonoids in treatment of chronic kidney disease[J]. Molecules, 2022, 27(7): 2365. DOI: 10.3390/molecules27072365.
    [18] LOUSA I, REIS F, SANTOS-SILVA A, et al. The signaling pathway of TNF receptors: linking animal models of renal disease to human CKD[J]. Int J Mol Sci, 2022, 23(6): 3284. DOI: 10.3390/ijms23063284.
    [19] RANGANATHAN N, ANTEYI E. The role of dietary fiber and gut microbiome modulation in progression of chronic kidney disease[J]. Toxins(Basel), 2022, 14(3): 183. DOI: 10.3390/toxins14030183.
    [20] MITROFANOVA A, MERSCHER S, FORNONI A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19(10): 629-645.
    [21] DEROUANE F, VAN MARCKE C, BERLIÈRE M, et al. Predictive biomarkers of response to neoadjuvant chemotherapy in breast cancer: current and future perspectives for precision medicine[J]. Cancers(Basel), 2022, 14(16): 3876. DOI: 10.3390/cancers14163876.
    [22] GEORGIANOS P I, VAIOS V, ROUMELIOTIS S, et al. Evidence for cardiorenal protection with SGLT-2 inhibitors and GLP-1 receptor agonists in patients with diabetic kidney disease[J]. J Pers Med, 2022, 12(2): 223. DOI: 10.3390/jpm12020223.
    [23] YAN Z P, SHAO T T. Chronic inflammation in chronic kidney disease[J]. Nephron, 2024, 148(3): 143-151.
    [24] YANAI H, ADACHI H, HAKOSHIMA M, et al. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease[J]. Int J Mol Sci, 2021, 22(17): 9221. DOI: 10.3390/ijms22179221.
    [25] WU D P, NIE J L, LIN H G, et al. Characteristics and predictors of low-grade renal artery stenosis in female patients with CKD[J]. Clin Exp Hypertens, 2023, 45(1): 2175849. DOI: 10.1080/10641963.2023.2175849.
    [26] LIU W W, WENG S W, CAO C H, et al. Association between monocyte-lymphocyte ratio and all-cause and cardiovascular mortality in patients with chronic kidney diseases: a data analysis from national health and nutrition examination survey (NHANES) 2003-2010[J]. Ren Fail, 2024, 46(1): 2352126. DOI: 10.1080/0886022X.2024.2352126.
    [27] GUO W C, SONG Y C, SUN Y, et al. Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: evidence from NHANES 2011-2018[J]. Front Endocrinol (Lausanne), 2022, 13: 1071465. DOI: 10.3389/fendo.2022.1071465.
    [28] CÍFKOVÁ R, STRILCHUK L. Sex differences in hypertension. Do we need a sex-specific guideline?[J]. Front Cardiovasc Med, 2022, 9: 960336. DOI: 10.3389/fcvm.2022.960336.
    [29] RIM C H, LEE W J, MUSAEV B, et al. Consortium of republican specialized scientific practical-medical center of oncology and radiology and south korean oncology advisory group. Challenges and suggestions in management of lung and liver cancer in uzbekistan: the second report of the uzbekistan-korea oncology consortium[J]. Int J Environ Res Public Health, 2022, 19(18): 11727. DOI: 10.3390/ijerph191811727.
    [30] PONTICELLI C, CITTERIO F. Non-immunologic causes of late death-censored kidney graft failure: a personalized approach[J]. J Pers Med, 2022, 12(8): 1271. DOI: 10.3390/jpm12081271.
    [31] HENRIKSEN K J, CHANG A. The importance of nephropathology in kidney cancer[J]. Semin Nephrol, 2020, 40(1): 69-75.
    [32] LI Y F, RICARDO S D, SAMUEL C S. Enhancing the therapeutic potential of mesenchymal stromal cell-based therapies with an anti-fibrotic agent for the treatment of chronic kidney disease[J]. Int J Mol Sci, 2022, 23(11): 6035. DOI: 10.3390/ijms23116035.
    [33] YAMAMOTO T, ISAKA Y. Pathological mechanisms of kidney disease in ageing[J]. Nat Rev Nephrol, 2024, 20(9): 603-615.
    [34] TURKMEN K, OZER H, KUSZTAL M. The relationship of epicardial adipose tissue and cardiovascular disease in chronic kidney disease and hemodialysis patients[J]. J Clin Med, 2022, 11(5): 1308. DOI: 10.3390/jcm11051308.
    [35] CHOW E, YANG A, CHUNG C H L, et al. A clinical perspective of the multifaceted mechanism of metformin in diabetes, infections, cognitive dysfunction, and cancer[J]. Pharmaceuticals (Basel), 2022, 15(4): 442. DOI: 10.3390/ph15040442.
    [36] WANG B, LI Z L, ZHANG Y L, et al. Hypoxia and chronic kidney disease[J]. EBioMedicine, 2022, 77: 103942. DOI: 10.1016/j.ebiom.2022.103942.
    [37] GABBIN B, MERAVIGLIA V, MUMMERY C L, et al. Toward human models of cardiorenal syndrome in vitro[J]. Front Cardiovasc Med, 2022, 9: 889553. DOI: 10.3389/fcvm.2022.889553.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 网络出版日期:  2025-11-17

目录

    /

    返回文章
    返回