A cross-sectional study on the relationship between the comprehensive index of systemic inflammation and chronic kidney disease
-
摘要:
目的 慢性肾脏病(CKD)是一种以肾功能逐渐减退为特征的疾病,影响患者的生活质量并增加死亡风险,已成为公共卫生负担。系统性炎症综合指数(AISI)是一种血液综合性炎症指标,与CKD之间的关系尚未得到验证,本研究旨在评估AISI与CKD之间的关系。 方法 本研究提取NHANES(2009—2018年)的数据,纳入成人参与者9 557例,其中CKD患者912例(9.54%)。纳入性别、年龄、种族、教育、收入支出比、BMI、吸烟、饮酒、高血压、糖尿病、代谢综合征、心血管疾病及实验室检验指标等协变量,评估无CKD和CKD参与者的差异,通过多元logistic回归模型评估AISI与CKD风险的关系,通过限制性立方样条分析线性和非线性关系,通过ROC、DCA、校准曲线评估模型预测能力,并进行亚组分析。 结果 CKD患者的AISI高于无CKD参与者[251.14(170.39,403.65)vs. 236.05(157.08,363.51),P=0.004];AISI较高的参与者患CKD的风险显著增加(OR=1.112,95% CI:1.040~1.188,P=0.002);AISI与CKD患病风险呈正相关线性关系(P for overall < 0.001;P for nonlinear=0.465),当AISI超过中位数值(237.30)时,CKD患病风险显著上升;构建的最终模型稳健,AUC为0.737(95% CI:0.718~0.756,P < 0.001);亚组分析表明性别在AISI与CKD风险关联中可能有调节作用。 结论 AISI作为炎症综合指标,与CKD发生风险相关,在AISI较高的人群中风险更大。该指标可能作为CKD风险筛查的有效工具,为高危人群的早期预警提供支持。 Abstract:Objective Chronic kidney disease (CKD) is characterized by a progressive decline in renal function, which has a detrimental effect on patients ' quality of life, increases mortality risk, and poses a significant public health burden. The aggregate index of systemic inflammation (AISI), a composite biomarker derived from blood cell counts, has not yet been definitively associated with CKD. This cross-sectional study was conducted with the objective of investigating the association between AISI levels and CKD prevalence in a cohort that is nationally representative. Methods A total of 9 557 adults from the NHANES 2009-2018 were analyzed, with 912 (9.54%) meeting CKD diagnostic criteria. The following covariates were included in the study: age, gender, race, education, income, poverty ratio, BMI, smoking, drinking, hypertension, diabetes, metabolic syndrome and biomarkers. Multivariable logistic regression models, adjusted for demographic and clinical confounders, were employed to assess the associations between AISI quartiles and CKD risk. Restricted cubic splines were utilized to evaluate linearity, while the ROC, DCA and calibration assessed the model ' s performance. Results Participants with CKD exhibited significantly higher median AISI values compared to non-CKD individuals [251.14 (170.39, 403.65) vs. 236.05 (157.08, 363.51), P=0.004]. Elevated AISI levels were found to be independently associated with increased risk of CKD (OR=1.112, 95% CI: 1.040-1.188, P=0.002). A linear dose-response relationship was observed (P for overall < 0.001; P for nonlinear=0.465), with CKD risk rising markedly above the cohort median AISI (237.30). The final model demonstrated strong predictive accuracy AUC value of 0.737(95% CI: 0.718-0.756, P < 0.001). Subgroup analyses further suggested gender-specific modifications of the association between the AISI and CKD. Conclusion As a composite inflammatory biomarker, AISI has been demonstrated to exhibit a dose-dependent association with the risk of CKD, particularly at elevated levels. These findings lend support to the hypothesis that the test has the potential utility for population-level CKD risk stratification and for the early identification of high-risk individuals. -
表 1 参与者临床特征比较
Table 1. Comparison of clinical characteristics of participants
项目 总数(n=9 557) 无CKD组(n=8 645) CKD组(n=912) 统计量 P值 年龄[M(P25, P75), 岁] 39.00(29.00,49.00) 39.00(29.00,49.00) 46.00(34.00,54.00) 8.242a < 0.001 性别[例(%)] 15.126b < 0.001 男性 4 691(50.02) 4 305(50.76) 386(41.53) 女性 4 866(49.98) 4 340(49.24) 526(58.47) 种族[例(%)] 20.738b < 0.001 墨西哥裔 1 388(10.11) 1 265(10.06) 123(10.72) 非西班牙裔白人 3 462(62.65) 3 186(63.46) 276(53.38) 非西班牙裔黑人 1 946(10.73) 1 670(10.04) 276(18.68) 其他种族 2 761(16.50) 2 524(16.44) 237(17.21) 教育年限[例(%)] 7.606b < 0.001 <9年 1 615(12.11) 1 413(11.68) 202(17.08) 9~11年 2 144(21.98) 1 931(21.84) 213(23.66) >11年 5 798(65.90) 5 301(66.48) 497(59.26) 收入支出比[M(P25, P75)] 2.89(1.37,5.00) 2.96(1.42,5.00) 2.24(1.06,4.48) -4.699a < 0.001 BMI[M(P25, P75)] 27.70(23.90, 32.30) 27.60(23.90, 32.00) 29.60(24.70, 35.20) 4.886a < 0.001 饮酒[例(%)] 4 028(45.47) 3 659(45.64) 369(43.59) 0.704b 0.400 吸烟[例(%)] 3 756(41.09) 3 356(40.62) 400(46.53) 5.907b 0.018 合并症[例(%)] 高血压 3 867(38.81) 3 292(36.99) 575(59.68) 73.430b < 0.001 糖尿病 2 480(24.55) 2 122(23.68) 358(34.42) 26.947b < 0.001 代谢综合征 1362(13.80) 1157(13.33) 205(19.24) 14.131b < 0.001 心血管疾病 55(4.99) 436(4.45) 115(11.25) 68.720b < 0.001 实验室指标[M(P25, P75)] 葡萄糖(mg/dL) 2.80(2.50,3.10) 2.80(2.50,3.10) 2.90(2.61,3.20) 7.846a < 0.001 总胆固醇(mg/dL) 91.00(84.00,99.00) 90.00(84.00,98.00) 93.00(85.00,110.00) 4.738a < 0.001 低密度脂蛋白(mg/dL) 126.00(110.00,144.00) 125.00(110.00,143.00) 131.00(115.00,153.00) 4.980a < 0.001 甘油三酯(mg/dL) 7.10(6.80,7.40) 7.10(6.80,7.40) 7.20(6.90,7.50) 2.778a 0.007 高密度脂蛋白(mg/dL) 189.00(165.00,216.00) 189.00(164.00,216.00) 196.00(167.00,226.00) 3.222a 0.002 血肌酐(mg/dL) 0.83(0.71,0.97) 0.83(0.71,0.96) 0.84(0.69,1.09) 2.606a 0.011 肾小球滤过率(mL/min) 99.86(87.43,110.76) 100.20(88.43,111.04) 96.49(61.13,108.92) -6.888a < 0.001 尿酸(mg/dL) 5.20(4.40,6.20) 5.20(4.30,6.10) 5.60(4.40,6.70) 4.280a < 0.001 AISI[M(P25, P75)] 237.29(157.50,367.28) 236.05(157.08,363.51) 251.14(170.39,403.65) 2.958a 0.004 AISI四分位数组[例(%)] 2.863b 0.043 Q1(<157.50) 2 389(21.97) 2 188(22.26) 201(18.69) Q2(157.50~237.30) 2 389(25.86) 2 179(25.95) 210(24.80) Q3(237.30~367.29) 2 389(25.71) 2 175(25.86) 214(24.10) Q4(>367.29) 2 390(26.46) 2 103(25.94) 287(32.42) 注:a为Z值,b为χ2值。 表 2 CKD参与者的加权多元logistic回归模型
Table 2. Weighted multiple logistic regression model for CKD participants
特征 模型1 模型2 模型3 OR(95% CI) P值 OR(95% CI) P值 OR(95% CI) P值 AISI 1.198(1.128~1.269) < 0.001 1.217(1.146~1.291) < 0.001 1.112(1.040~1.188) 0.002 AISI四分位数 Q2 1.049(0.857~1.284) 0.642 1.156(0.939~1.421) 0.171 1.116(0.898~1.387) 0.321 Q3 1.071(0.876~1.310) 0.504 1.174(0.954~1.445) 0.130 1.079(0.867~1.342) 0.494 Q4 1.486(1.229~1.796) < 0.001 1.626(1.333~1.984) < 0.001 1.279(1.032~1.584) 0.024 P for trend < 0.001 < 0.001 0.039 注:AISI四分位数分组以Q1为参照。模型1未调整协变量;模型2调整了性别、年龄、种族、教育、收入支出比和BMI;模型3调整了性别、年龄、种族、教育、收入支出比、BMI、饮酒、吸烟、高血压、糖尿病、代谢综合征、心血管疾病、葡萄糖、总胆固醇、低密度脂蛋白、甘油三酯、高密度脂蛋白、尿酸、血肌酐、肾小球滤过率。 表 3 亚组分析情况
Table 3. Subgroup analysis situation
亚组 OR (95% CI) P值 P for interaction Overall 1.172(1.091~1.250) < 0.001 年龄 0.828 < 60岁 1.153(1.032~1.296) 0.013 ≥60岁 1.175(1.078~1.286) 0.001 性别 0.009 男性 1.280(1.171~1.403) < 0.001 女性 1.074(0.962~1.185) 0.223 -
[1] DEN HARTOGH D J, TSIANI E. Health benefits of resveratrol in kidney disease: evidence from in vitro and in vivo studies[J]. Nutrients, 2019, 11(7): 1624. DOI: 10.3390/nu11071624. [2] YAMAMOTO H, ICHIKAWA Y, HIRANO S I, et al. Molecular hydrogen as a novel protective agent against pre-symptomatic diseases[J]. Int J Mol Sci, 2021, 22(13): 7211. DOI: 10.3390/ijms22137211. [3] KANDURI S R, VELEZ J C Q. Kidney dysfunction in the setting of liver failure: core curriculum 2024[J]. Am J Kidney Dis, 2024, 83(3): 386-401. [4] GALLO-BERNAL S, PATINO-JARAMILLO N, CALIXTO C A, et al. Nephrogenic systemic fibrosis in patients with chronic kidney disease after the use of gadolinium-based contrast agents: a review for the cardiovascular imager[J]. Diagnostics(Basel), 2022, 12(8): 1816. DOI: 10.3390/diagnostics12081816. [5] GOODBRED A J, LANGAN R C. Chronic kidney disease: prevention, diagnosis, and treatment[J]. Am Fam Physician, 2023, 108(6): 554-561. [6] 范晶, 黄冠文, 包继文, 等. IgA肾病预后相关危险因素分析[J]. 中华全科医学, 2022, 20(5): 731-734, 755. doi: 10.16766/j.cnki.issn.1674-4152.002441FAN J, HUANG G W, BAO J W, et al. Analysis of risk factors for the prognosis of IgA nephropathy[J]. Chinese Journal of General Practice, 2022, 20(5): 731-734, 755. doi: 10.16766/j.cnki.issn.1674-4152.002441 [7] SATARUG S, GOBE G C, VESEY D A. Multiple targets of toxicity in environmental exposure to low-dose cadmium[J]. Toxics, 2022, 10(8): 472. DOI: 10.3390/toxics10080472. [8] WANG B, LI Z S, MAO L F, et al. Hydrogen: a novel treatment strategy in kidney disease[J]. Kidney Dis(Basel), 2022, 8(2): 126-136. [9] ARIENTI C, LAZZARINI S G, POLLINI E, et al. Effectiveness of rehabilitation interventions in adults with multi-organ dysfunction syndrome: a rapid review[J]. J Rehabil Med, 2021, 53(8): jrm00221. DOI: 10.2340/16501977-2846. [10] YIN X S, ZOU J M, YANG J. The association between the aggregate index of systemic inflammation and risk of rheumatoid arthritis: retrospective analysis of NHANES 1999-2018[J]. Front Med(Lausanne), 2024, 11: 1446160. DOI: 10.3389/fmed.2024.1446160. [11] XIU J M, LIN X Q, CHEN Q S, et al. The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension[J]. Front Cardiovasc Med, 2023, 10: 1163900. DOI: 10.3389/fcvm.2023.1163900. [12] TARLE M, RAGUŽ M, LUK$\bar{\mathtt{S}}$IĆ I. A comparative study of the aggregate index of systemic inflammation (AISI) and c-reactive protein (CRP) in predicting odontogenic abscesses severity: a novel approach to assessing immunoinflammatory response[J]. Diagnostics(Basel), 2024, 14(19): 2163. DOI: 10.3390/diagnostics14192163. [13] CAO C, LI C Y, LI X T, et al. Association of systemic immune-inflammation index (SII) and aggregate index of systemic inflammation (AISI) with thyroid nodules in patients with type 2 diabetes mellitus: a retrospective study[J]. BMC Endocr Disord, 2023, 23(1): 251. DOI: 10.1186/s12902-023-01509-w. [14] JIANG Y, LUO B L, LU W, et al. Association between the aggregate index of systemic inflammation and clinical outcomes in patients with acute myocardial infarction: a retrospective study[J]. J Inflamm Res, 2024, 17: 7057-7067. doi: 10.2147/JIR.S481515 [15] QIU S H, JIANG Q, LI Y. The association between pan-immune-inflammation value and chronic obstructive pulmonary disease: data from NHANES 1999-2018[J]. Front Physiol, 2024, 15: 1440264. DOI: 10.3389/fphys.2024.1440264. [16] XU J P, PENG X Q, GUO L H, et al. The associations of the triglyceride-glucose index and its combination with blood pressure on cardiovascular and all-cause mortality in hypertension: a national study[J]. Front Endocrinol(Lausanne), 2024, 15: 1469055. DOI: 10.3389/fendo.2024.1469055. [17] CAO Y L, LIN J H, HAMMES H P, et al. Flavonoids in treatment of chronic kidney disease[J]. Molecules, 2022, 27(7): 2365. DOI: 10.3390/molecules27072365. [18] LOUSA I, REIS F, SANTOS-SILVA A, et al. The signaling pathway of TNF receptors: linking animal models of renal disease to human CKD[J]. Int J Mol Sci, 2022, 23(6): 3284. DOI: 10.3390/ijms23063284. [19] RANGANATHAN N, ANTEYI E. The role of dietary fiber and gut microbiome modulation in progression of chronic kidney disease[J]. Toxins(Basel), 2022, 14(3): 183. DOI: 10.3390/toxins14030183. [20] MITROFANOVA A, MERSCHER S, FORNONI A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19(10): 629-645. [21] DEROUANE F, VAN MARCKE C, BERLIÈRE M, et al. Predictive biomarkers of response to neoadjuvant chemotherapy in breast cancer: current and future perspectives for precision medicine[J]. Cancers(Basel), 2022, 14(16): 3876. DOI: 10.3390/cancers14163876. [22] GEORGIANOS P I, VAIOS V, ROUMELIOTIS S, et al. Evidence for cardiorenal protection with SGLT-2 inhibitors and GLP-1 receptor agonists in patients with diabetic kidney disease[J]. J Pers Med, 2022, 12(2): 223. DOI: 10.3390/jpm12020223. [23] YAN Z P, SHAO T T. Chronic inflammation in chronic kidney disease[J]. Nephron, 2024, 148(3): 143-151. [24] YANAI H, ADACHI H, HAKOSHIMA M, et al. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease[J]. Int J Mol Sci, 2021, 22(17): 9221. DOI: 10.3390/ijms22179221. [25] WU D P, NIE J L, LIN H G, et al. Characteristics and predictors of low-grade renal artery stenosis in female patients with CKD[J]. Clin Exp Hypertens, 2023, 45(1): 2175849. DOI: 10.1080/10641963.2023.2175849. [26] LIU W W, WENG S W, CAO C H, et al. Association between monocyte-lymphocyte ratio and all-cause and cardiovascular mortality in patients with chronic kidney diseases: a data analysis from national health and nutrition examination survey (NHANES) 2003-2010[J]. Ren Fail, 2024, 46(1): 2352126. DOI: 10.1080/0886022X.2024.2352126. [27] GUO W C, SONG Y C, SUN Y, et al. Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: evidence from NHANES 2011-2018[J]. Front Endocrinol (Lausanne), 2022, 13: 1071465. DOI: 10.3389/fendo.2022.1071465. [28] CÍFKOVÁ R, STRILCHUK L. Sex differences in hypertension. Do we need a sex-specific guideline?[J]. Front Cardiovasc Med, 2022, 9: 960336. DOI: 10.3389/fcvm.2022.960336. [29] RIM C H, LEE W J, MUSAEV B, et al. Consortium of republican specialized scientific practical-medical center of oncology and radiology and south korean oncology advisory group. Challenges and suggestions in management of lung and liver cancer in uzbekistan: the second report of the uzbekistan-korea oncology consortium[J]. Int J Environ Res Public Health, 2022, 19(18): 11727. DOI: 10.3390/ijerph191811727. [30] PONTICELLI C, CITTERIO F. Non-immunologic causes of late death-censored kidney graft failure: a personalized approach[J]. J Pers Med, 2022, 12(8): 1271. DOI: 10.3390/jpm12081271. [31] HENRIKSEN K J, CHANG A. The importance of nephropathology in kidney cancer[J]. Semin Nephrol, 2020, 40(1): 69-75. [32] LI Y F, RICARDO S D, SAMUEL C S. Enhancing the therapeutic potential of mesenchymal stromal cell-based therapies with an anti-fibrotic agent for the treatment of chronic kidney disease[J]. Int J Mol Sci, 2022, 23(11): 6035. DOI: 10.3390/ijms23116035. [33] YAMAMOTO T, ISAKA Y. Pathological mechanisms of kidney disease in ageing[J]. Nat Rev Nephrol, 2024, 20(9): 603-615. [34] TURKMEN K, OZER H, KUSZTAL M. The relationship of epicardial adipose tissue and cardiovascular disease in chronic kidney disease and hemodialysis patients[J]. J Clin Med, 2022, 11(5): 1308. DOI: 10.3390/jcm11051308. [35] CHOW E, YANG A, CHUNG C H L, et al. A clinical perspective of the multifaceted mechanism of metformin in diabetes, infections, cognitive dysfunction, and cancer[J]. Pharmaceuticals (Basel), 2022, 15(4): 442. DOI: 10.3390/ph15040442. [36] WANG B, LI Z L, ZHANG Y L, et al. Hypoxia and chronic kidney disease[J]. EBioMedicine, 2022, 77: 103942. DOI: 10.1016/j.ebiom.2022.103942. [37] GABBIN B, MERAVIGLIA V, MUMMERY C L, et al. Toward human models of cardiorenal syndrome in vitro[J]. Front Cardiovasc Med, 2022, 9: 889553. DOI: 10.3389/fcvm.2022.889553. -
下载: