Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins
-
摘要:
目的 利用孟德尔随机化方法(MR)分析三七总皂苷(PNS)抗血栓药物靶点的遗传基因与急性心肌梗死(AMI)的因果关系。 方法 从欧洲生物信息研究所、芬兰数据库、UK Biobank数据库得到全基因组关联研究(GWAS)数据集,均可在IEU Open GWAS网站在线获取。以随机效应逆方差加权法为主分析方法,MR-Egger回归检验水平多效性,Cochran' s Q检验评估异质性,留一法敏感性分析评估稳定性。 结果 共获取18个PNS核心靶点,将18个靶点的遗传代理经血栓类阳性疾病筛选后确定11个有效的抗血栓靶点,最终产生5个治疗AMI的潜在靶点,包括HIF1A、MDM2、CCND1、TP53、INS。PNS靶标HIF1A、CCND1、TP53、INS与AMI发生风险增加相关(均OR>1, P<0.05),MDM2与AMI发生风险降低相关(OR=0.671, P=0.022)。 结论 PNS具有潜在的治疗作用,可通过抗血栓基因靶向心肌凋亡通路调控AMI进展,为AMI精准治疗策略开发提供了关键靶点。 Abstract:Objective To analyze the causal relationship between genes underlying the antithrombotic drug target of Panax notoginseng saponins (PNS) and acute myocardial infarction (AMI) using Mendelian randomization (MR) method. Methods Genome-wide association study (GWAS) datasets were obtained from the European Bioinformatics Institute, Finnish database and UK Biobank database, all available online at the IEU Open GWAS website. Random-effects inverse variance weighting was the main analytical method, MR-Egger regression tested for horizontal pleiotropy, Cochran' s Q test assessed heterogeneity, and leave-one-out sensitivity analysis assessed stability. Results Eighteen core drug targets of PNS were obtained, and the genetic proxies of the 18 targets were screened for thrombus-positive diseases to identify 11 effective antithrombotic targets, which resulted in five potential drug targets for the treatment of AMI, including HIF1A, MDM2, CCND1, TP53 and INS. PNS targets HIF1A, CCND1, TP53, and INS were associated with an increased risk of AMI (all OR>1, P<0.05), and MDM2 was associated with a decreased risk of AMI (OR=0.671, P=0.022). Conclusion PNS exhibits potential therapeutic effects for AMI by targeting myocardial apoptosis pathways through antithrombotic genes to modulate disease progression, highlighting its potential as a key target for developing precision therapeutic strategies. -
表 1 各种表型的GWAS数据集信息
Table 1. GWAS dataset information for each phenotype
暴露/结局 GWAS ID 样本量(病例/对照) SNP数量 血小板计数 ebi-a-GCST90002357 542 827 46 393 493 静脉血栓栓塞症 finn-b-I9_VTE 9 176/209 616 16 380 466 动脉栓塞和血栓形成 finn-b-I9_ARTEMBTHR 789/206 541 16 380 409 肺栓塞 finn-b-I9_PULMEMB 4 185/214 228 16 380 466 其他栓塞和血栓形成 finn-b-I9_THROMBOTH 1 919/190 028 16 380 403 急性心肌梗死 ukb-a-533 3 927/333 272 10 894 596 急性心肌梗死 ukb-e-I21_CSA 374/8 502 9 805 094 表 2 PNS靶标与静脉血栓栓塞症(finn-b-I9_VTE)的MR结果
Table 2. MR analysis of PNS targets on venous thromboembolism (finn-b-I9_ARTEMBTHR)
靶点 随机效应逆方差加权法 多效性检验MR-Egger SNP数量 效应值β SE P值 截距 SE P值 HIF1A 243 -0.231 0.071 0.001 -0.001 0.004 0.858 MDM2 407 0.307 0.035 <0.001 0.002 0.003 0.518 AKT1 12 -0.651 0.270 0.016 -0.028 0.020 0.188 CCND1 220 0.325 0.074 <0.001 0.000 0.003 0.963 TP53 295 0.360 0.058 <0.001 0.000 0.003 0.949 CTNNB1 547 0.192 0.044 <0.001 -0.001 0.002 0.521 INS 461 0.233 0.067 <0.001 0.000 0.003 0.893 表 3 PNS靶标与动脉栓塞和血栓形成(finn-b-I9_ARTEMBTHR)的MR结果
Table 3. MR results of PNS targets on arterial embolism and thrombosis (finn-b-I9_ARTEMBTHR)
靶点 随机效应逆方差加权法 多效性检验MR-Egger SNP数量 效应值β SE P值 截距 SE P值 MDM2 407 0.441 0.100 <0.001 -0.012 0.007 0.095 CDKN1A 239 0.435 0.150 0.004 -0.003 0.008 0.651 MYC 65 -0.805 0.395 0.041 0.010 0.024 0.668 AKT1 12 2.454 0.828 0.003 -0.030 0.063 0.644 CTNNB1 547 -0.232 0.113 0.040 -0.002 0.006 0.662 ESR1 20 1.242 0.575 0.031 -0.011 0.044 0.806 EP300 106 -0.516 0.246 0.036 0.009 0.012 0.446 表 4 PNS靶标与肺栓塞(finn-b-I9_PULMEMB)的MR结果
Table 4. The MR results of PNS target on pulmonary embolism (finn-b-I9_PULMEMB)
靶点 随机效应逆方差加权法 多效性检验MR-Egger SNP数量 效应值β SE P值 截距 SE P值 HIF1A 243 -0.274 0.095 0.004 0.002 0.005 0.645 MDM2 407 0.093 0.043 0.032 0.006 0.003 0.093 CCND1 220 0.523 0.103 <0.001 0.002 0.005 0.734 TP53 295 0.452 0.085 <0.001 -0.004 0.004 0.283 CTNNB1 547 0.284 0.060 <0.001 -0.001 0.003 0.679 INS 461 0.401 0.081 <0.001 0.001 0.004 0.763 ESR1 20 0.532 0.233 0.023 0.012 0.020 0.556 表 5 PNS靶标与其他栓塞和血栓形成(finn-b-I9_THROMBOTH)的MR结果
Table 5. MR results of PNS targets in relation to other embolisms and thromboses (finn-b-I9_THROMBOTH)
靶点 随机效应逆方差加权法 多效性检验MR-Egger SNP数量 效应值β SE P值 截距 SE P值 HIF1A 243 0.253 0.109 0.020 -0.001 0.007 0.904 MDM2 407 0.269 0.063 <0.001 -0.008 0.005 0.100 MYC 65 -0.638 0.267 0.017 -0.031 0.016 0.051 AKT1 12 1.224 0.540 0.023 0.008 0.040 0.843 TP53 295 0.279 0.123 0.023 0.003 0.006 0.636 CTNNB1 547 0.166 0.079 0.035 0.000 0.004 0.987 INS 461 1.046 0.150 <0.001 0.008 0.007 0.282 EP300 106 -0.767 0.139 <0.001 0.007 0.008 0.379 表 6 PNS抗血栓有效靶点与急性心肌梗死(ukb-e-I21_CSA; ukb-a-533)AMI有因果关系的5个靶点
Table 6. The 5 causal targets of PNS (Panax notoginseng saponins) against thrombosis in relation to acute myocardial infarction (AMI; ukb-e-I21_CSA; ukb-a-533)
靶点 随机效应逆方差加权法 多效性检验MR-Egger SNP数量 效应值β SE P值 OR(95% CI) 截距 SE P值 HIF1A 244 0.926 0.302 0.002 2.525(1.398~4.560) 0.006 0.017 0.733 MDM2 302 -0.399 0.174 0.022 0.671(0.478~0.943) -0.007 0.011 0.559 CCND1 221 0.005 0.001 <0.001 1.005(1.002~1.007) 0.000 0.000 0.817 TP53 302 0.002 0.001 0.018 1.002(1.000~1.004) 0.000 0.000 0.387 INS 456 0.004 0.001 <0.001 1.004(1.002~1.006) 0.000 0.000 0.136 -
[1] RAO S V, O'DONOGHUE M L, RUEL M, et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI guideline for the management of patients with acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2025, 151(13): e771-e862. [2] 李雪, 薛素芳, 王淳秀, 等. 急性心脑梗死临床特征及治疗转归的研究[J]. 医学研究杂志, 2024, 53(1): 131-135.LI X, XUE SF, WANG CX, et al. Study on Clinical Profile, Treatment and Outcomes of Patients with Acute Cardio-cerebral Infarction[J]. Journal of Medical Research, 2024, 53(1): 131-135. [3] KRVGER N, KREFTING J, KESSLER T, et al. Ticagrelor vs. Prasugrel for acute coronary syndrome in routine care[J]. JAMA Netw Open, 2024, 7(12): e2448389. DOI: 10.1001/jamanetworkopen.2024.48389. [4] CHEN P, GAO Z, GUO M, et al. Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials[J]. Front Pharmacol, 2024, 15(3): 1353662. DOI: 10.3389/fphar.2024.1353662. [5] ZHOU R, ZHANG J, ZHANG W, et al. Clinical efficacy and safety of Panax notoginseng saponins in treating chronic obstructive pulmonary disease with blood hypercoagulability: a meta-analysis of randomized controlled trials[J]. Phytomedicine, 2024, 12(3): 155-244. [6] 李岩, 张宇霞, 单海燕. 基于两样本孟德尔随机化分析空腹血糖与冠心病的因果关系[J]. 中华全科医学, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833LI Y, ZHANG Y X, SHAN H Y. Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization[J]. Chinese Journal of General Practice, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833 [7] 国家中医心血管病临床医学研究中心, 中国医师协会中西医结合医师分会, 中国中西医结合学会活血化瘀专业委员会, 等. 三七总皂苷制剂临床应用中国专家共识[J]. 中国中西医结合杂志, 2021, 41(10): 1157-1167.NATIONAL CRCCMCD, CHINESE PAIM, CHINESE SIM, PROFESSIONAL CABRBS, et al. Chinese Expert Consensus on Clinical Application of Total Saponins of Panax Notognseng[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2021, 41(10): 1157-1167. [8] 孙爱民. 血塞通对急性ST段抬高型心肌梗死患者PCI术后炎症因子及心功能的影响[J]. 慢性病学杂志, 2021, 22(9): 1425-1427.SUN A M. Effect of hemosiderophores on inflammatory factors and cardiac function after PCI in patients with acute ST-segment elevation myocardial infarction[J]. Chronic Pathematology Journal, 2021, 22(9): 1425-1427. [9] 王清华. 注射用血栓通联合他汀类药物对急性心肌梗死患者PCI术后血脂及内皮功能的影响[J]. 黑龙江医药科学, 2023, 46(6): 189-190.WANG Q H. Effect of injectable thromboxane combined with statins on lipids and endothelial function after PCI in patients with acute myocardial infarction[J]. Heilongjiang Medicine and Pharmacy, 2023, 46(6): 189-190. [10] ALANOVA P, ALAN L, OPLETALOVA B, et al. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia[J]. Acta Physiol(Oxf), 2024, 240(9): e14202. DOI: 10.1111/apha.14202. [11] CHEN Y, SHAN S, XUE Q, et al. Sirtuin1 mitigates hypoxia-induced cardiomyocyte apoptosis in myocardial infarction via PHD3/HIF-1α[J]. Mol Med, 2025, 31(1): 100. DOI: 10.1186/s10020-025-01155-z. [12] XIA J, CHEN C, SUN Y, et al. Panax quinquefolius saponins and panax notoginseng saponins attenuate myocardial hypoxia-reoxygenation injury by reducing excessive mitophagy[J]. Cell Biochem Biophys, 2024, 82(2): 1179-1191. doi: 10.1007/s12013-024-01267-z [13] LIU X, LU M, ZHONG H, et al. Panax notoginseng saponins protect H9c2 cells from hypoxia-reoxygenation injury through the Forkhead Box O3a hypoxia-inducible factor-1 alpha cell signaling pathway[J]. J Cardiovasc Pharmacol, 2021, 78(5): e681-e689. doi: 10.1097/FJC.0000000000001120 [14] ZHU X, QIU Z, LEI S, et al. The role of P53 in myocardial ischemia-reperfusion injury[J]. Cardiovasc Drugs Ther, 2025, 39(1): 195-209. doi: 10.1007/s10557-023-07480-x [15] ZHAO L, SUN L, LI X, et al. Potential cardioprotective effect of genipin via cyclooxidase 2 suppression and P53 signal pathway attenuation in induced myocardial infarction in rats[J]. Shock(Augusta, Ga.), 2022, 58(5): 457-463. [16] ZHU Y, CHEN Y, ZU Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation[J]. J Transl Med, 2024, 22(1): 612. DOI: 10.1186/s12967-024-05415-0. [17] WANG L, CHEN X, WANG Y, et al. MiR-30c-5p mediates the effects of panax notoginseng saponins in myocardial ischemia reperfusion injury by inhibiting oxidative stress-induced cell damage[J]. Biomed Pharmacother, 2020, 125(3): 109963. DOI: 10.1016/j.biopha.2020.109963. [18] ZHENG Z, LIANG S, SUN S, et al. Clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats[J]. J Healthc Eng, 2022, 2022: 8706730. DOI: 10.1155/2022/8706730. [19] ZHENG S, LIU T, CHEN M, et al. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats[J]. Front Pharmacol, 2023, 14(1): 1260674. DOI: 10.3389/fphar.2023.1260674. [20] ABOULEISA R, SALAMA A, OU Q, et al. Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure[J]. Circulation, 2022, 145(17): 1339-1355. doi: 10.1161/CIRCULATIONAHA.121.057641 [21] DU C, ZHAO S, SHAN T, et al. Cellular nucleic acid binding protein facilitates cardiac repair after myocardial infarction by activating β-catenin signaling[J]. J Mol Cell Cardiol, 2024, 189(4): 66-82. [22] 刘镏. Ankrd1蛋白通过上调cyclinD1促进新生小鼠心梗后心肌再生修复的作用机制研究[D]. 南京: 南京医科大学, 2023.LIU Z. Mechanism of action of Ankrd1 protein in promoting myocardial regeneration and repair after myocardial infarction in neonatal mice through up-regulation of cyclinD1[D]. Nanjing: Nanjing Medical University, 2023. [23] HOU L, ZOU Z, WANG Y, et al. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification[J]. Aging, 2024, 16(8): 6745-6756. [24] FENG L L, LI B W, XI Y, et al. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction[J]. Am J Physiol Cell Physiol, 2022, 322(2): C164-C176. doi: 10.1152/ajpcell.00344.2021 [25] SHAN Z, ZHANG H, HE C, et al. High-protein mulberry leaves improve glucose and lipid metabolism via activation of the PI3K/Akt/PPARα/CPT-1 pathway[J]. Int J Mol Sci, 2024, 25(16): 8726. DOI: 10.3390/ijms25168726. [26] CHANG X, FENG X, LI S, et al. Taoren Honghua Decoction alleviates atherosclerosis by inducing autophagy and inhibiting the PI3K-AKT signaling pathway to regulate cholesterol efflux and inflammatory responses[J]. Int Immunopharmacol, 2025, 144(1): 113629. DOI: 10.1016/j.intimp.2024.113629. [27] CUI F, XIN H. IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway[J]. Inflamm Res, 2022, 71(5-6): 669-680. doi: 10.1007/s00011-022-01557-3 -
下载: