留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三七总皂苷编码基因治疗急性心肌梗死的潜在分子靶向策略研究

周瑞玲 孙敬辉 邓艳萍 黄弘博 牛泽龙 王培利

周瑞玲, 孙敬辉, 邓艳萍, 黄弘博, 牛泽龙, 王培利. 三七总皂苷编码基因治疗急性心肌梗死的潜在分子靶向策略研究[J]. 中华全科医学, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198
引用本文: 周瑞玲, 孙敬辉, 邓艳萍, 黄弘博, 牛泽龙, 王培利. 三七总皂苷编码基因治疗急性心肌梗死的潜在分子靶向策略研究[J]. 中华全科医学, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198
ZHOU Ruiling, SUN Jinghui, DENG Yanping, HUANG Hongbo, NIU Zelong, WANG Peili. Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins[J]. Chinese Journal of General Practice, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198
Citation: ZHOU Ruiling, SUN Jinghui, DENG Yanping, HUANG Hongbo, NIU Zelong, WANG Peili. Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins[J]. Chinese Journal of General Practice, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198

三七总皂苷编码基因治疗急性心肌梗死的潜在分子靶向策略研究

doi: 10.16766/j.cnki.issn.1674-4152.004198
基金项目: 

国家自然科学基金项目 82305028

详细信息
    通讯作者:

    王培利,E-mail:191593690@qq.com

  • 中图分类号: R542.22

Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins

  • 摘要:   目的  利用孟德尔随机化方法(MR)分析三七总皂苷(PNS)抗血栓药物靶点的遗传基因与急性心肌梗死(AMI)的因果关系。  方法  从欧洲生物信息研究所、芬兰数据库、UK Biobank数据库得到全基因组关联研究(GWAS)数据集,均可在IEU Open GWAS网站在线获取。以随机效应逆方差加权法为主分析方法,MR-Egger回归检验水平多效性,Cochran' s Q检验评估异质性,留一法敏感性分析评估稳定性。  结果  共获取18个PNS核心靶点,将18个靶点的遗传代理经血栓类阳性疾病筛选后确定11个有效的抗血栓靶点,最终产生5个治疗AMI的潜在靶点,包括HIF1A、MDM2、CCND1、TP53、INS。PNS靶标HIF1A、CCND1、TP53、INS与AMI发生风险增加相关(均OR>1, P<0.05),MDM2与AMI发生风险降低相关(OR=0.671, P=0.022)。  结论  PNS具有潜在的治疗作用,可通过抗血栓基因靶向心肌凋亡通路调控AMI进展,为AMI精准治疗策略开发提供了关键靶点。

     

  • 图  1  PNS的18个核心靶点

    Figure  1.  Eighteen core targets identified for PNS

    表  1  各种表型的GWAS数据集信息

    Table  1.   GWAS dataset information for each phenotype

    暴露/结局 GWAS ID 样本量(病例/对照) SNP数量
    血小板计数 ebi-a-GCST90002357 542 827 46 393 493
    静脉血栓栓塞症 finn-b-I9_VTE 9 176/209 616 16 380 466
    动脉栓塞和血栓形成 finn-b-I9_ARTEMBTHR 789/206 541 16 380 409
    肺栓塞 finn-b-I9_PULMEMB 4 185/214 228 16 380 466
    其他栓塞和血栓形成 finn-b-I9_THROMBOTH 1 919/190 028 16 380 403
    急性心肌梗死 ukb-a-533 3 927/333 272 10 894 596
    急性心肌梗死 ukb-e-I21_CSA 374/8 502 9 805 094
    下载: 导出CSV

    表  2  PNS靶标与静脉血栓栓塞症(finn-b-I9_VTE)的MR结果

    Table  2.   MR analysis of PNS targets on venous thromboembolism (finn-b-I9_ARTEMBTHR)

    靶点 随机效应逆方差加权法 多效性检验MR-Egger
    SNP数量 效应值β SE P 截距 SE P
    HIF1A 243 -0.231 0.071 0.001 -0.001 0.004 0.858
    MDM2 407 0.307 0.035 <0.001 0.002 0.003 0.518
    AKT1 12 -0.651 0.270 0.016 -0.028 0.020 0.188
    CCND1 220 0.325 0.074 <0.001 0.000 0.003 0.963
    TP53 295 0.360 0.058 <0.001 0.000 0.003 0.949
    CTNNB1 547 0.192 0.044 <0.001 -0.001 0.002 0.521
    INS 461 0.233 0.067 <0.001 0.000 0.003 0.893
    下载: 导出CSV

    表  3  PNS靶标与动脉栓塞和血栓形成(finn-b-I9_ARTEMBTHR)的MR结果

    Table  3.   MR results of PNS targets on arterial embolism and thrombosis (finn-b-I9_ARTEMBTHR)

    靶点 随机效应逆方差加权法 多效性检验MR-Egger
    SNP数量 效应值β SE P 截距 SE P
    MDM2 407 0.441 0.100 <0.001 -0.012 0.007 0.095
    CDKN1A 239 0.435 0.150 0.004 -0.003 0.008 0.651
    MYC 65 -0.805 0.395 0.041 0.010 0.024 0.668
    AKT1 12 2.454 0.828 0.003 -0.030 0.063 0.644
    CTNNB1 547 -0.232 0.113 0.040 -0.002 0.006 0.662
    ESR1 20 1.242 0.575 0.031 -0.011 0.044 0.806
    EP300 106 -0.516 0.246 0.036 0.009 0.012 0.446
    下载: 导出CSV

    表  4  PNS靶标与肺栓塞(finn-b-I9_PULMEMB)的MR结果

    Table  4.   The MR results of PNS target on pulmonary embolism (finn-b-I9_PULMEMB)

    靶点 随机效应逆方差加权法 多效性检验MR-Egger
    SNP数量 效应值β SE P 截距 SE P
    HIF1A 243 -0.274 0.095 0.004 0.002 0.005 0.645
    MDM2 407 0.093 0.043 0.032 0.006 0.003 0.093
    CCND1 220 0.523 0.103 <0.001 0.002 0.005 0.734
    TP53 295 0.452 0.085 <0.001 -0.004 0.004 0.283
    CTNNB1 547 0.284 0.060 <0.001 -0.001 0.003 0.679
    INS 461 0.401 0.081 <0.001 0.001 0.004 0.763
    ESR1 20 0.532 0.233 0.023 0.012 0.020 0.556
    下载: 导出CSV

    表  5  PNS靶标与其他栓塞和血栓形成(finn-b-I9_THROMBOTH)的MR结果

    Table  5.   MR results of PNS targets in relation to other embolisms and thromboses (finn-b-I9_THROMBOTH)

    靶点 随机效应逆方差加权法 多效性检验MR-Egger
    SNP数量 效应值β SE P 截距 SE P
    HIF1A 243 0.253 0.109 0.020 -0.001 0.007 0.904
    MDM2 407 0.269 0.063 <0.001 -0.008 0.005 0.100
    MYC 65 -0.638 0.267 0.017 -0.031 0.016 0.051
    AKT1 12 1.224 0.540 0.023 0.008 0.040 0.843
    TP53 295 0.279 0.123 0.023 0.003 0.006 0.636
    CTNNB1 547 0.166 0.079 0.035 0.000 0.004 0.987
    INS 461 1.046 0.150 <0.001 0.008 0.007 0.282
    EP300 106 -0.767 0.139 <0.001 0.007 0.008 0.379
    下载: 导出CSV

    表  6  PNS抗血栓有效靶点与急性心肌梗死(ukb-e-I21_CSA; ukb-a-533)AMI有因果关系的5个靶点

    Table  6.   The 5 causal targets of PNS (Panax notoginseng saponins) against thrombosis in relation to acute myocardial infarction (AMI; ukb-e-I21_CSA; ukb-a-533)

    靶点 随机效应逆方差加权法 多效性检验MR-Egger
    SNP数量 效应值β SE P OR(95% CI) 截距 SE P
    HIF1A 244 0.926 0.302 0.002 2.525(1.398~4.560) 0.006 0.017 0.733
    MDM2 302 -0.399 0.174 0.022 0.671(0.478~0.943) -0.007 0.011 0.559
    CCND1 221 0.005 0.001 <0.001 1.005(1.002~1.007) 0.000 0.000 0.817
    TP53 302 0.002 0.001 0.018 1.002(1.000~1.004) 0.000 0.000 0.387
    INS 456 0.004 0.001 <0.001 1.004(1.002~1.006) 0.000 0.000 0.136
    下载: 导出CSV
  • [1] RAO S V, O'DONOGHUE M L, RUEL M, et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI guideline for the management of patients with acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2025, 151(13): e771-e862.
    [2] 李雪, 薛素芳, 王淳秀, 等. 急性心脑梗死临床特征及治疗转归的研究[J]. 医学研究杂志, 2024, 53(1): 131-135.

    LI X, XUE SF, WANG CX, et al. Study on Clinical Profile, Treatment and Outcomes of Patients with Acute Cardio-cerebral Infarction[J]. Journal of Medical Research, 2024, 53(1): 131-135.
    [3] KRVGER N, KREFTING J, KESSLER T, et al. Ticagrelor vs. Prasugrel for acute coronary syndrome in routine care[J]. JAMA Netw Open, 2024, 7(12): e2448389. DOI: 10.1001/jamanetworkopen.2024.48389.
    [4] CHEN P, GAO Z, GUO M, et al. Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials[J]. Front Pharmacol, 2024, 15(3): 1353662. DOI: 10.3389/fphar.2024.1353662.
    [5] ZHOU R, ZHANG J, ZHANG W, et al. Clinical efficacy and safety of Panax notoginseng saponins in treating chronic obstructive pulmonary disease with blood hypercoagulability: a meta-analysis of randomized controlled trials[J]. Phytomedicine, 2024, 12(3): 155-244.
    [6] 李岩, 张宇霞, 单海燕. 基于两样本孟德尔随机化分析空腹血糖与冠心病的因果关系[J]. 中华全科医学, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833

    LI Y, ZHANG Y X, SHAN H Y. Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization[J]. Chinese Journal of General Practice, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833
    [7] 国家中医心血管病临床医学研究中心, 中国医师协会中西医结合医师分会, 中国中西医结合学会活血化瘀专业委员会, 等. 三七总皂苷制剂临床应用中国专家共识[J]. 中国中西医结合杂志, 2021, 41(10): 1157-1167.

    NATIONAL CRCCMCD, CHINESE PAIM, CHINESE SIM, PROFESSIONAL CABRBS, et al. Chinese Expert Consensus on Clinical Application of Total Saponins of Panax Notognseng[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2021, 41(10): 1157-1167.
    [8] 孙爱民. 血塞通对急性ST段抬高型心肌梗死患者PCI术后炎症因子及心功能的影响[J]. 慢性病学杂志, 2021, 22(9): 1425-1427.

    SUN A M. Effect of hemosiderophores on inflammatory factors and cardiac function after PCI in patients with acute ST-segment elevation myocardial infarction[J]. Chronic Pathematology Journal, 2021, 22(9): 1425-1427.
    [9] 王清华. 注射用血栓通联合他汀类药物对急性心肌梗死患者PCI术后血脂及内皮功能的影响[J]. 黑龙江医药科学, 2023, 46(6): 189-190.

    WANG Q H. Effect of injectable thromboxane combined with statins on lipids and endothelial function after PCI in patients with acute myocardial infarction[J]. Heilongjiang Medicine and Pharmacy, 2023, 46(6): 189-190.
    [10] ALANOVA P, ALAN L, OPLETALOVA B, et al. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia[J]. Acta Physiol(Oxf), 2024, 240(9): e14202. DOI: 10.1111/apha.14202.
    [11] CHEN Y, SHAN S, XUE Q, et al. Sirtuin1 mitigates hypoxia-induced cardiomyocyte apoptosis in myocardial infarction via PHD3/HIF-1α[J]. Mol Med, 2025, 31(1): 100. DOI: 10.1186/s10020-025-01155-z.
    [12] XIA J, CHEN C, SUN Y, et al. Panax quinquefolius saponins and panax notoginseng saponins attenuate myocardial hypoxia-reoxygenation injury by reducing excessive mitophagy[J]. Cell Biochem Biophys, 2024, 82(2): 1179-1191. doi: 10.1007/s12013-024-01267-z
    [13] LIU X, LU M, ZHONG H, et al. Panax notoginseng saponins protect H9c2 cells from hypoxia-reoxygenation injury through the Forkhead Box O3a hypoxia-inducible factor-1 alpha cell signaling pathway[J]. J Cardiovasc Pharmacol, 2021, 78(5): e681-e689. doi: 10.1097/FJC.0000000000001120
    [14] ZHU X, QIU Z, LEI S, et al. The role of P53 in myocardial ischemia-reperfusion injury[J]. Cardiovasc Drugs Ther, 2025, 39(1): 195-209. doi: 10.1007/s10557-023-07480-x
    [15] ZHAO L, SUN L, LI X, et al. Potential cardioprotective effect of genipin via cyclooxidase 2 suppression and P53 signal pathway attenuation in induced myocardial infarction in rats[J]. Shock(Augusta, Ga.), 2022, 58(5): 457-463.
    [16] ZHU Y, CHEN Y, ZU Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation[J]. J Transl Med, 2024, 22(1): 612. DOI: 10.1186/s12967-024-05415-0.
    [17] WANG L, CHEN X, WANG Y, et al. MiR-30c-5p mediates the effects of panax notoginseng saponins in myocardial ischemia reperfusion injury by inhibiting oxidative stress-induced cell damage[J]. Biomed Pharmacother, 2020, 125(3): 109963. DOI: 10.1016/j.biopha.2020.109963.
    [18] ZHENG Z, LIANG S, SUN S, et al. Clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats[J]. J Healthc Eng, 2022, 2022: 8706730. DOI: 10.1155/2022/8706730.
    [19] ZHENG S, LIU T, CHEN M, et al. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats[J]. Front Pharmacol, 2023, 14(1): 1260674. DOI: 10.3389/fphar.2023.1260674.
    [20] ABOULEISA R, SALAMA A, OU Q, et al. Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure[J]. Circulation, 2022, 145(17): 1339-1355. doi: 10.1161/CIRCULATIONAHA.121.057641
    [21] DU C, ZHAO S, SHAN T, et al. Cellular nucleic acid binding protein facilitates cardiac repair after myocardial infarction by activating β-catenin signaling[J]. J Mol Cell Cardiol, 2024, 189(4): 66-82.
    [22] 刘镏. Ankrd1蛋白通过上调cyclinD1促进新生小鼠心梗后心肌再生修复的作用机制研究[D]. 南京: 南京医科大学, 2023.

    LIU Z. Mechanism of action of Ankrd1 protein in promoting myocardial regeneration and repair after myocardial infarction in neonatal mice through up-regulation of cyclinD1[D]. Nanjing: Nanjing Medical University, 2023.
    [23] HOU L, ZOU Z, WANG Y, et al. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification[J]. Aging, 2024, 16(8): 6745-6756.
    [24] FENG L L, LI B W, XI Y, et al. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction[J]. Am J Physiol Cell Physiol, 2022, 322(2): C164-C176. doi: 10.1152/ajpcell.00344.2021
    [25] SHAN Z, ZHANG H, HE C, et al. High-protein mulberry leaves improve glucose and lipid metabolism via activation of the PI3K/Akt/PPARα/CPT-1 pathway[J]. Int J Mol Sci, 2024, 25(16): 8726. DOI: 10.3390/ijms25168726.
    [26] CHANG X, FENG X, LI S, et al. Taoren Honghua Decoction alleviates atherosclerosis by inducing autophagy and inhibiting the PI3K-AKT signaling pathway to regulate cholesterol efflux and inflammatory responses[J]. Int Immunopharmacol, 2025, 144(1): 113629. DOI: 10.1016/j.intimp.2024.113629.
    [27] CUI F, XIN H. IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway[J]. Inflamm Res, 2022, 71(5-6): 669-680. doi: 10.1007/s00011-022-01557-3
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10

目录

    /

    返回文章
    返回