Study on the relationship between the nature of cold and heat of IBS-D and changes in gut microbiota and metabolites
-
摘要:
目的 本研究旨在通过腹泻型肠易激综合征(IBS-D)寒湿证和湿热证大鼠模型研究IBS-D中医寒热病性与肠道菌群及代谢物变化的关系。 方法 采用随机数字表法将30只新生大鼠随机分为正常组、湿热组和寒湿组,每组10只。湿热组大鼠采用母子分离、束缚应激、高脂高糖饮食以及湿热环境构建湿热证IBS-D大鼠模型,寒湿组采用母子分离、束缚应激和番泻叶灌胃建立寒湿证IBS-D大鼠模型。采用16S rRNA测序和非靶向代谢组学分别检测各组大鼠的肠道菌群和粪便代谢物,并进行生物信息学分析。 结果 各组大鼠肠道菌群的β多样性存在明显差异(P=0.001)。Clostridium_sensu_ stricto_1、Roseburia和Prevotella等菌属在湿热组中富集;Dubosiella、Akkermansia和Romboutsia等菌属在寒湿组富集。湿热组大鼠紊乱的代谢通路主要涉及丙氨酸、天冬氨酸和谷氨酸代谢等;寒湿组大鼠紊乱的代谢通路主要涉及类固醇激素生物合成、色氨酸代谢和组氨酸代谢等;湿热组与寒湿组大鼠的差异通路主要涉及泛酸和辅酶A生物合成、组氨酸代谢和甘油磷脂代谢等。 结论 寒湿证和湿热证IBS-D的肠道菌群和代谢物特征不同,肠道菌群和代谢物的变化可能是中医寒热病性的微观体现。 Abstract:Objective To investigate the correlation between changes in gut microbiota and metabolites and the nature of cold and heat in traditional Chinese medicine (TCM) through diarrhea-predominant irritable bowel syndrome (IBS-D) rat models with cold-dampness syndrome and damp-heat syndrome. Methods Thirty newborn rats were divided into a healthy group, a damp-heat group, and a cold-dampness group using the random number table method, with 10 rats in each group. The damp-heat group was subjected to maternal separation, restraint stress, a high-fat and high-sugar diet, and a damp-heat environment to establish an IBS-D rat model with damp-heat syndrome. The cold-dampness group was subjected to maternal separation, restraint stress, and intragastric administration of senna leaves to establish an IBS-D rat model with cold-dampness syndrome. Subsequently, 16S rRNA sequencing and non-targeted metabolomics were employed to detect the gut microbiota and fecal metabolites of the rats in each group, respectively, followed by bioinformatics analysis. Results Significant differences in β-diversity were observed among the rat groups (P=0.001). Specifically, bacterial genera such as Clostridium_sensu_stricto_1, Roseburia, and Prevotella were enriched in the damp-heat group, whereas Dubosiella, Akkermansia, and Romboutsia were enriched in the cold-dampness group. The disrupted metabolic pathways in the damp-heat group rats primarily involved alanine, aspartate, and glutamate metabolism. In contrast, the cold-dampness group rats exhibited disruptions in steroid hormone biosynthesis, tryptophan metabolism, and histidine metabolism. The differential pathways between the damp-heat and cold-dampness groups mainly involved pantothenate and CoA biosynthesis, histidine metabolism, and glycerophospholipid metabolism. Conclusion There are differences in the characteristics of gut microbiota and metabolites between IBS-D with cold-dampness syndrome and damp-heat syndrome. The changes in gut microbiota and metabolites might be the microscopic manifestations of the nature of cold and heat in TCM. -
表 1 各组大鼠肠道菌群α多样性分析
Table 1. Analysis of gut microbiota α-diversity across rat groups
组别 只数 ACE指数(x±s) Chao指数[M(P25, P75)] Shannon指数(x±s) Simpson指数[M(P25, P75), ×100] 正常组 10 1 170.22±242.32 1 138.98(1 011.43, 1 358.99) 4.18±0.23 4.51(3.93, 6.40) 寒湿组 10 1 143.41±485.03 1 001.69(860.45, 1 277.42) 3.97±0.52 6.28(4.15, 8.04) 湿热组 10 947.01±243.98 978.91(744.04, 1 059.02)b 3.66±0.79 6.30(4.34, 9.91) 统计量 1.260a 7.200c 2.136a 2.400c P值 0.300 0.027 0.138 0.301 注:a为F值,c为H值。与正常组比较,bP<0.05。 表 2 各组大鼠的差异代谢物比较
Table 2. Comparison of differential metabolites in each group of rats
组别 差异代谢物 正常组vs.湿热组 正常组优势代谢物 Linalool (8-hydroxydihydro-);Neobyakangelicol;7a,12a-Dihydroxy-5b-cholestan-3-one;4a-Methylzymosterol-4-carboxylic acid;Lumirubin;Acacetin;DOPA sulfate;Tazobactam;N-Phenylglycine;(+)-Pisatin;N-VINYL-2-PYRROLIDONE;Cyclo(Arg-Gly-Asp-D-Phe-Val);Pyocyanin;Tigecycline;Muscomosin;Prostaglandin D3 湿热组优势代谢物 N-Palmitoyl Threonine;Nivalenol;Tri-N-acetylchitotriose;8-Butanoylneosolaniol;Lactose-lysine;Andrographolide;Estradiol-17alpha 3-D-glucuronoside;Flavan-3-ol;7,8-Dihydro-2'-deoxyguanosine;Mefloquine;Rubraflavone C;Mardepodect;Fructose lactate;M2 di-hydroxylated metabolite 正常组vs.寒湿组 正常组优势代谢物 Algestone;Enisoprost;2-alpha-Ethoxydihydrophytuberin;4a-Methylzymosterol-4-carboxylic acid;4'-O-Glucopyranosylsinapic acid;PC(PGF1alpha/2:0);5,8,11-Eicosatrienoic acid;7,8-Dihydroneopterin;Spongothymidine;Prostaglandin D3;13,14-dehydro-15-cyclohexyl;Carbaprostacyclin;Beta-Cortol;Cambendazole;2-[2-Ethyl-N-(1-Methoxypropan-2-yl)-6-methylanilino]-2-Oxoacetic Acid;18-Hydroxycorticosterone;Cortexolone;Androstenedione;Chitin;Cortol;GPA(16:0/2:0);(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid;Cyclo(Arg-Gly-Asp-D-Phe-Val);Carboprost;5-[1-[(2-chlorophenyl)methyl]pyrrol-2-yl]-3-methyl-1,2,4-oxadiazole 寒湿组优势代谢物 7,8-Dihydro-2'-deoxyguanosine;Nodulisporic acid;3-dehydro-6-deoxoteasterone;Genipin;Propranolol;Glyzarin -
[1] 赵静丽, 赵丽丽, 陈朴, 等. 醒脾养儿颗粒联合双歧杆菌四联活菌片治疗小儿腹泻型肠易激综合征的疗效分析[J]. 中华全科医学, 2022, 20(11): 1889-1892. doi: 10.16766/j.cnki.issn.1674-4152.002728ZHAO J L, ZHAO L L, CHEN P, et al. Efficacy of Xingpi Yanger Granule combined with bifidobacterium quadruple viable tablets in the treatment of infantile diarrhea predominant irritable bowel syndrome[J]. Chinese Journal of General Practice, 2022, 20(11): 1889-1892. doi: 10.16766/j.cnki.issn.1674-4152.002728 [2] 卞立群, 黄绍刚, 魏玮, 等. 肠易激综合征中医诊疗专家共识(2024)[J]. 中医杂志, 2024, 65(18): 1948-1956.BIAN L Q, HUANG S G, WEI W, et al. Expert consensus on the diagnosis and treatment of irritable bowel syndrome in traditional Chinese medicine (2024)[J]. Journal of Traditional Chinese Medicine, 2024, 65(18): 1948-1956. [3] 王永双, 李慧, 许笑梅, 等. 基于肠道菌群探讨腹泻型肠易激综合征的中西医治疗进展[J]. 现代中西医结合杂志, 2023, 32(5): 725-730.WANG Y S, LI H, XU X M, et al. Advances in the treatment of diarrhea-predominant irritable bowel syndrome with traditional Chinese and Western medicine based on intestinal flora[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2023, 32(5): 725-730. [4] TANG B, HU Y, CHEN J, et al. Oral and fecal microbiota in patients with diarrheal irritable bowel syndrome[J]. Heliyon, 2023, 9(1): e13114. DOI: 10.1016/j.heliyon.2023.e13114. [5] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(6): 461-465.SUN H, WU X. Correlations between gut microbiota characteristics and quality of life and psychiatric symptoms in adult irritable bowel syndrome patients with different subtypes[J]. Chinese Journal of Digestive Diseases and Imaging (Electronic Edition), 2023, 13(6): 461-465. [6] 熊钦, 李奕霖, 姚承佼, 等. 腹泻型肠易激综合征常见证型粪便肠道菌群宏基因组学横断面研究[J]. 中医杂志, 2024, 65(5): 503-511.XIONG Q, LI Y L, YAO C J, et al. A cross-sectional study on fecal intestinal microbiota metagenomics of common syndromes of diarrhea-predominant irritable bowel syndrome[J]. Journal of Traditional Chinese Medicine, 2024, 65(5): 503-511. [7] 唐镔镔, 胡运莲, 文娜. 肠道菌群与腹泻型肠易激综合征中医病位病性的关系[J]. 国际中医中药杂志, 2023, 45(8): 929-934.TANG B B, HU Y L, WEN N. Relationship between intestinal flora and location and nature of diarrheal irritable bowel syndrome in Traditional Chinese Medicine[J]. International Journal of Traditional Chinese Medicine, 2023, 45(8): 929-934. [8] 管洁, 邓娜, 蔺晓源, 等. 腹泻型肠易激综合征及其中医病证结合动物模型的研究进展[J]. 中医药信息, 2023, 40(5): 73-78.GUAN J, DENG N, LIN X Y, et al. Research progress on diarrhea-predominant irritable bowel syndrome and its animal model combined with traditional Chinese medicine syndromes and diseases[J]. Journal of Traditional Chinese Medicine Information, 2023, 40(5): 73-78. [9] 李丹, 李佳, 吴松. 艾灸对脾胃虚寒型肠易激综合征大鼠肠粘膜机械屏障的影响及机制研究[J]. 针灸临床杂志, 2021, 37(3): 68-72.LI D, LI J, WU S. Effects of moxibustion on intestinal mucosal mechanical barrier of rats with IBS of deficiency-cold of spleen and stomach[J]. Journal of Clinical Acupuncture and Moxibustion, 2021, 37(3): 68-72. [10] 旺建伟, 王一鸣, 赵清玉, 等. 肠道微生态紊乱与肝脾不和之肠易激综合征的关联性分析[J]. 医学研究杂志, 2022, 51(3): 1-4.WANG J W, WANG Y M, ZHAO Q Y, et al. Analysis of the correlation between intestinal microecological disorder and irritable bowel syndrome with disharmony between liver and spleen[J]. Journal of Medical Research, 2022, 51(3): 1-4. [11] MEI L, ZHOU J, SU Y, et al. Gut microbiota composition and functional prediction in diarrhea-predominant irritable bowel syndrome[J]. BMC Gastroenterol, 2021, 21(1): 105. DOI: 10.1186/s12876-021-01693-w. [12] JABBAR K S, DOLAN B, EKLUND L, et al. Association between brachyspira and irritable bowel syndrome with diarrhoea[J]. Gut, 2021, 70(6): 1117-1129. doi: 10.1136/gutjnl-2020-321466 [13] XIAO L, LIU Q, LUO M, et al. Gut microbiota-derived metabolites in irritable bowel syndrome[J]. Front Cell Infect Microbiol, 2021, 11: 729346. DOI: 10.3389/fcimb.2021.729346. [14] 石媛嫄, 侯琳, 张丽, 等. 微生物代谢产物在肠-脑轴中作用机制研究进展[J]. 青岛大学学报(医学版), 2021, 57(3): 470-474.SHI Y Y, HOU L, ZHANG L, et al. Research progress on the mechanism of action of microbial metabolites in the gut-brain axis[J]. Journal of Qingdao University (Medical Edition), 2021, 57(3): 470-474. [15] SMOLINSKA S, WINIARSKA E, GLOBINSKA A, et al. Histamine: a mediator of intestinal disorders: a review[J]. Metabolites, 2022, 12(10): 895. DOI: 10.3390/metabo12100895. [16] 蔡方红, 达静静, 俞洋, 等. 泛酸激酶与线粒体功能障碍相关疾病关系的研究进展[J]. 中华医学杂志, 2024, 104(2): 163-166.CAI F H, DA J J, YU Y, et al. Research progress on the relationship between pantothenate kinase and diseases related to mitochondrial dysfunction[J]. National Medical Journal of China, 2024, 104(2): 163-166. [17] CHOJNACKI C, BLONSKA A, KONRAD P, et al. Changes in tryptophan metabolism on serotonin and kynurenine pathways in patients with irritable bowel syndrome[J]. Nutrients, 2023, 15(5): 1262. DOI: 10.3390/nu15051262. [18] CHOJNACKI C, KONRAD P, BŁOÑSKA A, et al. Altered tryptophan metabolism on the kynurenine pathway in depressive patients with small intestinal bacterial overgrowth[J]. Nutrients, 2022, 14(15): 3217. DOI: 10.3390/nu15051262. [19] 岑水梅, 邹颖, 曾家炀, 等. 黄芩汤通过调节色氨酸代谢激活AhR修复溃疡性结肠炎肠道屏障的作用机制研究[J]. 中国中药杂志, 2024, 49(20): 5555-5565.CAI F H, DA J J, YU Y, et al. Mechanism of Huangqin Decoction in repairing intestinal barrier of ulcerative colitis by regulating tryptophan metabolism and activating AhR[J]. China Journal of Chinese Materia Medica, 2024, 49(20): 5555-5565. [20] GASALY N, DE VOS P, HERMOSO M A. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol, 2021, 12: 658354. DOI: 10.3389/fimmu.2021.658354. [21] SZELEST M, WALCZAK K, PLECH T. A new insight into the potential role of tryptophan-derived AhR ligands in skin physiological and pathological processes[J]. Int J Mol Sci, 2021, 22(3): 1104. DOI: 10.3390/ijms22031104. [22] SCOTT S A, FU J, CHANG P V. Dopamine receptor D2 confers colonization resistance via microbial metabolites[J]. Nature, 2024, 628(8006): 180-185. doi: 10.1038/s41586-024-07179-5 [23] LV W J, MA Y M, HUANG J Y, et al. Polysaccharides derived from Shenling Baizhu San improve colitis via modulating tryptophan metabolism in mice[J]. Int J Biol Macromol, 2022, 222(Pt A): 1127-1136. -
下载: