留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神经炎症相关因子在老年脊柱骨折患者术后谵妄发生预测中的价值及预测模型构建

汪海钢 李艳玲 李跃兵 刘璐 黄余亮 王新华 杨世伟

汪海钢, 李艳玲, 李跃兵, 刘璐, 黄余亮, 王新华, 杨世伟. 神经炎症相关因子在老年脊柱骨折患者术后谵妄发生预测中的价值及预测模型构建[J]. 中华全科医学, 2025, 23(10): 1667-1671. doi: 10.16766/j.cnki.issn.1674-4152.004201
引用本文: 汪海钢, 李艳玲, 李跃兵, 刘璐, 黄余亮, 王新华, 杨世伟. 神经炎症相关因子在老年脊柱骨折患者术后谵妄发生预测中的价值及预测模型构建[J]. 中华全科医学, 2025, 23(10): 1667-1671. doi: 10.16766/j.cnki.issn.1674-4152.004201
WANG Haigang, LI Yanling, LI Yuebing, LIU Lu, HUANG Yuliang, WANG Xinhua, YANG Shiwei. The value of neuroinflammation-related factors in predicting the occurrence of postoperative delirium in elderly patients with spinal fractures and the construction of predictive models[J]. Chinese Journal of General Practice, 2025, 23(10): 1667-1671. doi: 10.16766/j.cnki.issn.1674-4152.004201
Citation: WANG Haigang, LI Yanling, LI Yuebing, LIU Lu, HUANG Yuliang, WANG Xinhua, YANG Shiwei. The value of neuroinflammation-related factors in predicting the occurrence of postoperative delirium in elderly patients with spinal fractures and the construction of predictive models[J]. Chinese Journal of General Practice, 2025, 23(10): 1667-1671. doi: 10.16766/j.cnki.issn.1674-4152.004201

神经炎症相关因子在老年脊柱骨折患者术后谵妄发生预测中的价值及预测模型构建

doi: 10.16766/j.cnki.issn.1674-4152.004201
基金项目: 

浙江省中医药科技计划项目 2024ZR173

详细信息
    通讯作者:

    李艳玲,E-mail:13588453050@163.com

  • 中图分类号: R683.2

The value of neuroinflammation-related factors in predicting the occurrence of postoperative delirium in elderly patients with spinal fractures and the construction of predictive models

  • 摘要:   目的  为探究神经炎症相关因子与老年脊柱骨折患者谵妄发生的关系,纳入老年脊柱骨折患者测量其基线神经炎症相关因子水平,并据此构建风险预测模型。  方法  纳入2022年1月—2024年6月浙江中医药大学附属第二医院426例老年脊柱骨折手术患者,根据7∶3的比例将患者分为训练集(298例)与验证集(128例)。根据患者术后谵妄发生情况分组(发生组和未发生组),探讨老年脊柱骨折术后谵妄发生的影响因素以构建预测模型,并分析其预测效能。  结果  多因素logistic回归分析显示,年龄、手术时间、白介素-6(IL-6)、IL-1β、C-反应蛋白(CRP)、中枢神经特异蛋白(S100β)均为老年脊柱骨折手术患者术后谵妄发生的独立影响因素(P < 0.05);ROC曲线分析显示,基于各项影响因素构建的模型预测老年脊柱骨折手术患者术后谵妄发生的曲线下面积为0.881,灵敏度为85.71%、特异度为79.75%,约登指数为0.655。验证集验证显示,该预测模型的曲线下面积为0.858(95% CI: 0.782~0.916),灵敏度为80.65%,特异度为76.47%,约登指数为0.571;决策曲线分析显示训练集和验证集的阈值概率分别为1%和2%,提示该预测模型具有较高的净收益。  结论  年龄、手术时间、IL-6、IL-1β、CRP、S100β均为老年脊柱骨折患者谵妄发生的影响因素,据此构建的预测模型具有较高的预测效能。

     

  • 图  1  训练集预测模型的ROC曲线

    Figure  1.  ROC curve of training set prediction model

    图  2  验证集预测模型的ROC曲线

    Figure  2.  Prediction and analysis of recurrence risk of validation set

    图  3  训练集预测模型的决策曲线

    Figure  3.  Decision curve of training set prediction model

    图  4  验证集预测模型的决策曲线

    Figure  4.  Decision curve of validation set prediction model

    表  1  训练集和验证集老年脊柱骨折手术患者一般资料比较

    Table  1.   Comparison of general data of patients in training set and verification set

    项目 训练集(n=298) 验证集(n=128) 统计量 P
    年龄(x ±s,岁) 68.12±6.50 69.23±7.88 1.402a 0.162
    性别[例(%)] 1.901b 0.168
      男性 182(61.07) 69(53.91)
      女性 116(38.93) 59(46.09)
    BMI(x ±s) 25.23±2.42 24.96±2.28 1.100a 0.272
    受教育年限[例(%)] 2.101b 0.147
      ≤12 201(67.45) 77(60.16)
      >12年 97(32.55) 51(39.84)
    基础疾病[例(%)]
      高血压 95(31.88) 31(24.22) 2.5234b 0.112
      糖尿病 89(29.87) 33(25.78) 0.731b 0.393
      高脂血症 61(20.47) 29(22.66) 0.257b 0.612
      冠心病 43(14.43) 19(14.84) 0.012b 0.911
      慢性阻塞性肺疾病 24(8.05) 6(4.69) 1.550b 0.213
    美国麻醉医师协会分级[例(%)] 3.206b 0.201
      Ⅰ级 157(52.68) 59(46.09)
      Ⅱ级 113(37.92) 50(39.06)
      Ⅲ级 28(9.40) 19(14.84)
    手术部位[例(%)] 1.419b 0.234
      颈椎 135(45.30) 50(39.06)
      腰椎 163(54.70) 78(60.94)
    手术时间(x ±s,min) 177.83±23.64 173.76±26.52 1.499a 0.135
    术中低血压[例(%)] 9(3.02) 3(2.34) 0.150b 0.699
    IL-6(x ±s,pg/mL) 23.00±5.72 23.71±4.81 1.317a 0.189
    IL-1β(x ±s,pg/mL) 3.65±1.07 3.58±1.14 0.592a 0.555
    CRP(x ±s,pg/mL) 5.17±1.89 5.04±1.81 0.671a 0.503
    S100β(x ±s,pg/mL) 59.17±15.14 62.14±16.08 1.778a 0.077
    注:at值,b为χ2值。
    下载: 导出CSV

    表  2  训练集发生组与未发生组老年脊柱骨折手术患者一般资料比较

    Table  2.   Comparison of general data of elderly patients undergoing spinal fracture surgery between the occurrence group and the non-occurrence group in the training set

    项目 发生组(n=56) 未发生组(n=242) 统计量 P
    年龄(x ±s,岁) 71.82±5.34 66.33±5.50 6.894a < 0.001
    性别[例(%)] 0.299b 0.584
      男性 36(64.29) 146(60.33)
      女性 20(35.71) 96(39.67)
    BMI(x ±s) 24.97±2.11 25.55±2.44 1.642a 0.102
    受教育年限[例(%)] 0.497b 0.481
      ≤12年 40(71.43) 161(66.53)
      >12年 16(28.57) 81(33.47)
    基础疾病[例(%)]
      高血压 17(30.36) 78(32.23) 0.074b 0.786
      糖尿病 20(35.71) 66(28.51) 1.126b 0.289
      高脂血症 13(223.21) 48(19.83) 0.319b 0.572
      冠心病 10(17.86) 33(13.64) 0.656b 0.418
      慢性阻塞性肺疾病 6(10.71) 18(7.44) 0.659b 0.417
    美国麻醉医师协会分级[例(%)] 8.641b 0.013
      Ⅰ级 25(44.64) 132(54.55)
      Ⅱ级 20(35.71) 93(38.43)
      Ⅲ级 11(19.64) 17(7.02)
    手术部位[例(%)] 1.170b 0.275
      颈椎 29(51.79) 106(43.80)
      腰椎 27(48.21) 136(56.20)
    手术时间(x ±s,min) 179.37±19.71 168.22±16.71 3.920a < 0.001
    术中低血压[例(%)] 5(8.93) 4(1.65) 8.219b 0.004
    IL-6(x ±s,pg/mL) 24.62±1.81 23.18±1.17 5.685a < 0.001
    IL-1β(x ±s,pg/mL) 3.89±1.11 3.56±0.98 2.048a 0.044
    CRP(x ±s,pg/mL) 5.75±1.72 4.95±1.51 3.206a 0.002
    S100β(x ±s,pg/mL) 65.45±12.35 58.91±13.26 3.521a 0.001
    注:at值,b为χ2值。
    下载: 导出CSV

    表  3  老年脊柱骨折手术患者术后谵妄风险因素的logistic回归分析

    Table  3.   Logistic regression analysis of postoperative delirium risk factors in elderly patients undergoing spinal fracture surgery

    变量 B SE Waldχ2 P OR 95% CI
    年龄 0.171 0.037 21.501 < 0.001 1.186 1.104~1.275
    美国麻醉医师协会分级 0.349 0.278 1.577 0.209 1.418 0.822~2.444
    手术时间 0.023 0.011 4.083 0.043 1.023 1.001~1.046
    术中低血压 1.623 0.883 3.378 0.066 5.067 0.898~28.592
    IL-6 0.600 0.144 17.428 < 0.001 1.822 1.375~2.415
    IL-1β 0.483 0.198 5.937 0.015 1.621 1.099~2.389
    CRP 0.268 0.119 5.017 0.025 1.307 1.034~1.652
    S100β 0.057 0.016 13.466 < 0.001 1.059 1.027~1.091
    注:赋值方法如下,术后是否发生谵妄(因变量),是=1,否=0;年龄、手术时间、IL-6、IL-1β、CRP、S100β均以实际值赋值;ASA分级,Ⅰ级=0,Ⅱ级=1,Ⅲ级=2;术中低血压,未发生=0,发生=1。
    下载: 导出CSV

    表  4  结肠息肉患者术后复发风险因素的预测效能

    Table  4.   Predictive efficacy of risk factors for postoperative recurrence in patients with colonic polyps

    模型 曲线下面积(95% CI) 约登指数 敏感性(%) 特异性(%)
    训练集预测模型 0.881(0.838~0.915) 0.655 85.71 79.75
    验证集预测模型 0.858(0.782~0.916) 0.571 80.65 76.47
    下载: 导出CSV
  • [1] 中国老年医学学会麻醉学分会. 中国老年患者术后谵妄防治专家共识[J]. 国际麻醉学与复苏杂志, 2023, 44(1): 1-27.

    Chinese Geriatrics Society. Expert consensus on prevention and treatment of postoperative delirium in elderly patients in China[J]. International Journal of Anesthesiology and Resuscitation, 2023, 44(1): 1-27.
    [2] WATNE L O, POLLMANN C T, NEERLAND B E, et al. Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients[J]. J Clin Invest, 2023, 133(2): e163472. DOI: 10.1172/JCI163472.
    [3] ZHANG S, TAO X J, DING S, et al. Associations between postoperative cognitive dysfunction, serum Interleukin-6 and postoperative delirium among patients after coronary artery bypass grafting: a mediation analysis[J]. Nurs Crit Care, 2024, 29(6): 1245-1252. doi: 10.1111/nicc.13081
    [4] HU J, ZHANG Y, HUANG C, et al. Interleukin-6 trans-signalling in hippocampal CA1 neurones mediates perioperative neurocognitive disorders in mice[J]. Br J Anaesth, 2022, 129(6): 923-936. doi: 10.1016/j.bja.2022.08.019
    [5] 高永祥, 张晋昕. Logistic回归分析的样本量确定[J]. 循证医学, 2018, 18(2): 122-124.

    GAO Y X, ZHANG J X. Determination of Sample Size in Logistic Regression Analysis[J]. The Journal of Evidence-Based Medicine, 2018, 18(2): 122-124.
    [6] ALDECOA C, BETTELLI G, BILOTTA F, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium[J]. Eur J Anaesthesiol, 2017, 34(4): 192-214. doi: 10.1097/EJA.0000000000000594
    [7] RASHID M H, SPARROW N A, ANWAR F, et al. Interleukin-6 mediates delirium-like phenotypes in a murine model of urinary tract infection[J]. J Neuroinflammation, 2021, 18(1): 247. DOI: 10.1186/s12974-021-02304-x.
    [8] SPARROW N A, ANWAR F, COVARRUBIAS A E, et al. IL-6 Inhibition reduces neuronal injury in a murine model of ventilator-induced lung Injury[J]. Am J Respir Cell Mol Biol, 2021, 65(4): 403-412. doi: 10.1165/rcmb.2021-0072OC
    [9] QIAN H, GAO F, WU X, et al. Activation of the CD200/CD200R1 axis attenuates neuroinflammation and improves postoperative cognitive dysfunction via the PI3K/Akt/NF-κB signaling pathway in aged mice[J]. Inflamm Res, 2023, 72(12): 2127-2144. doi: 10.1007/s00011-023-01804-1
    [10] BARRETO CHANG O L, MAZE M. Defining the role of Interleukin-6 for the development of perioperative neurocognitive disorders: evidence from clinical and preclinical studies[J]. Front Aging Neurosci, 2022, 14: 1097606. DOI: 10.3389/fnagi.2022.1097606.
    [11] XIAO M Z, LIU C X, ZHOU L G, et al. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: a review[J]. Medicine (Baltimore), 2023, 102(8): e32991. DOI: 10.1097/MD.0000000000032991.
    [12] LEE H J, HWANG D S, WANG S K, et al. Early assessment of delirium in elderly patients after hip surgery[J]. Psychiatry Investig, 2011, 8(4): 340-347. doi: 10.4306/pi.2011.8.4.340
    [13] SUN Y, PENG H P, WU T T. Postoperative C-reactive protein predicts postoperative delirium in colorectal cancer following surgery[J]. Clin Interv Aging, 2023, 18: 559-570. doi: 10.2147/CIA.S387117
    [14] DODSWORTH B T, REEVE K, FALCO L, et al. Development and validation of an international preoperative risk assessment model for postoperative delirium[J]. Age Ageing, 2023, 52(6): afad086. DOI: 10.1093/ageing/afad086.
    [15] MA X, MEI X, TANG T, et al. Preoperative homocysteine modifies the association between postoperative C-reactive protein and postoperative delirium[J]. Front Aging Neurosci, 2022, 14: 963421. DOI: 10.3389/fnagi.2022.963421.
    [16] RUHNAU J, MULLER J, NOWAK S, et al. Serum biomarkers of a pro-Neuroinflammatory state may define the pre-operative risk for postoperative delirium in spine surgery[J]. Int J Mol Sci, 2023, 24(12): 10335. DOI: 10.3390/ijms241210335.
    [17] ZHOU Y, MA Y, YU C, et al. Detection analysis of perioperative plasma and CSF reveals risk biomarkers of postoperative delirium of parkinson's disease patients undergoing deep brain stimulation of the subthalamic nuclei[J]. Clin Interv Aging, 2022, 17(1): 1739-1749.
    [18] TAYLOR J, PARKER M, CASEY C P, et al. Postoperative delirium and changes in the blood-brain barrier, neuroinflammation, and cerebrospinal fluid lactate: a prospective cohort study[J]. Br J Anaesth, 2022, 129(2): 219-230. doi: 10.1016/j.bja.2022.01.005
    [19] KURUP M T, SARKAR S, VERMA R, et al. Comparative evaluation of intraoperative dexmedetomidine versus lidocaine for reducing postoperative cognitive decline in the elderly: a prospective randomized controlled trial[J]. Anaesthesiol Intensive Ther, 2023, 55(5): 349-357. doi: 10.5114/ait.2023.134251
    [20] TANG C, LI Y, LAI Y. Intraoperative dexmedetomidine for prevention of postoperative cognitive dysfunction and delirium in elderly patients with lobectomy: a propensity score-matched, retrospective study[J]. Int J Gen Med, 2024, 17: 2673-2680. doi: 10.2147/IJGM.S456762
    [21] 葛宇, 于海洋, 梁成民, 等. 椎体后凸成形术治疗骨质疏松椎体压缩性骨折影响后凸畸形改善的相关因素[J]. 中华全科医学, 2023, 21(11): 1827-1829, 1927. doi: 10.16766/j.cnki.issn.1674-4152.003234

    GE Y, YU H Y, LIANG C M, et al. The related factors of kyphoplasty for osteoporotic vertebral compression fractures affecting the improvement of kyphosis deformity[J]. Chinese Journal of General Practice, 2023, 21(11): 1827-1829, 1927. doi: 10.16766/j.cnki.issn.1674-4152.003234
    [22] 王金伙, 陶强, 康逸群, 等. 目标导向液体疗法对老年全髋关节置换手术患者围术期免疫炎性反应及早期认知功能的影响[J]. 西部医学, 2022, 34(8): 1147-1151, 1156.

    WANG J H, TAO Q, KANG Y Q, et al. Effects of target-directed fluid therapy on perioperative immune inflammatory response and early cognitive function in elderly patients undergoing total hip arthroplasty[J]. Med J West Chin, 2022, 34(8): 1147-1151, 1156.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-11

目录

    /

    返回文章
    返回