| [1] |
HILL M, TRAN N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4): dmm047662. DOI: 10.1242/dmm.047662.
|
| [2] |
MEHTEROV N. Role of microRNAs in cancer development and treatment[J]. Int J Mol Sci, 2023, 24(13): 11058. DOI: 10.3390/ijms241311058.
|
| [3] |
HO P T B, CLARK I M, LE L T T. MicroRNA-based diagnosis and therapy[J]. Int J Mol Sci, 2022, 23(13): 7167. DOI: 10.3390/ijms23137167.
|
| [4] |
ANDERSEN G B, TOST J. Circulating miRNAs as biomarker in cancer[J]. Recent Results Cancer Res, 2020, 215: 277-298.
|
| [5] |
HUSSEN B M, HIDAYAT H J, SALIHI A, et al. MicroRNA: a signature for cancer progression[J]. Biomed Pharmacother, 2021, 138: 111528. DOI: 10.1016/j.biopha.2021.111528.
|
| [6] |
FERRAGUT CARDOSO A P, BANERJEE M, NAIL A N, et al. miRNA dysregulation is an emerging modulator of genomic instability[J]. Semin Cancer Biol, 2021, 76: 120-131. doi: 10.1016/j.semcancer.2021.05.004
|
| [7] |
AKBARZADEH M, MIHANFAR A, AKBARZADEH S, et al. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer[J]. Life Sci, 2021, 285: 119984. DOI: 10.1016/j.lfs.2021.119984.
|
| [8] |
SAFA A, ABAK A, SHOOREI H, et al. MicroRNAs as regulators of ERK/MAPK pathway: a comprehensive review[J]. Biomed Pharmacother, 2020, 132: 110853. DOI: 10.1016/j.biopha.2020.110853.
|
| [9] |
HE B, ZHAO Z, CAI Q, et al. miRNA-based biomarkers, therapies, and resistance in cancer[J]. Int J Biol Sci, 2020, 16(14): 2628-2647. doi: 10.7150/ijbs.47203
|
| [10] |
KLICKA K, GRZYWA T M, MIELNICZUK A, et al. The role of miR-200 family in the regulation of hallmarks of cancer[J]. Front Oncol, 2022, 12: 965231. DOI: 10.3389/fonc.2022.965231.
|
| [11] |
JO H, SHIM K, JEOUNG D. Potential of the miR-200 Family as a target for developing anti-cancer therapeutics[J]. Int J Mol Sci, 2022, 23(11): 5881. DOI: 10.3390/ijms23115881.
|
| [12] |
CAVALLARI I, CICCARESE F, SHAROVA E, et al. The miR-200 family of micrornas: fine tuners of epithelial-mesenchymal transition and circulating cancer biomarkers[J]. Cancers (Basel), 2021, 13(23): 5874. DOI: 10.3390/cancers13235874.
|
| [13] |
BUSTOS M A, ONO S, MARZESE D M, et al. MiR-200a regulates CDK4/6 inhibitor effect by targeting CDK6 in metastatic melanoma[J]. J Invest Dermatol, 2017, 137(9): 1955-1964. doi: 10.1016/j.jid.2017.03.039
|
| [14] |
HOU X, YANG L, JIANG X, et al. Role of microRNA-141-3p in the progression and metastasis of hepatocellular carcinoma cell[J]. Int J Biol Macromol, 2019, 128: 331-339. doi: 10.1016/j.ijbiomac.2019.01.144
|
| [15] |
TAN T, XU X H, LU X H, et al. MiRNA-200a-3p suppresses the proliferation, migration and invasion of non-small cell lung cancer through targeting IRS2[J]. Eur Rev Med Pharmacol Sci, 2020, 24(2): 712-720.
|
| [16] |
MU J W, ZHOU X Y, WANG Q J, et al. MicroRNA-141-3p promoted the progression of nasopharyngeal carcinoma through targeting DLC1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(21): 11105-11113.
|
| [17] |
李栗扬, 徐鹏, 王蓓蒂, 等. MicroRNA-429在妇科恶性肿瘤中的研究进展[J]. 中华全科医学, 2021, 19(6): 1013-1016, 1034. doi: 10.16766/j.cnki.issn.1674-4152.001973LI L Y, XU P, WANG B D, et al. Research Progress of MicroRNA-429 in Gynecological Malignancies[J]. Chinese Journal of General Practice, 2021, 19(6): 1013-1016, 1034. doi: 10.16766/j.cnki.issn.1674-4152.001973
|
| [18] |
陈恩利, 楼俊晓, 王镇, 等. lncRNA GIHCG通过调节miR-429在原发性肝癌发生发展中的作用[J]. 中华全科医学, 2019, 17(5): 779-783. doi: 10.16766/j.cnki.issn.1674-4152.000790CHEN E L, LOU J X, WANG Z, et al. lncRNA GIHCG plays a role in the occurrence and development of primary liver cancer by regulating miR-429[J]. Chinese Journal of General Practice, 2019, 17(5): 779-783. doi: 10.16766/j.cnki.issn.1674-4152.000790
|
| [19] |
PAN G, LIU Y, SHANG L, et al. EMT-associated microRNAs and their roles in cancer stemness and drug resistance[J]. Cancer Commun (Lond), 2021, 41(3): 199-217. doi: 10.1002/cac2.12138
|
| [20] |
YU L, CAO C, LI X, et al. Complete loss of miR-200 family induces EMT associated cellular senescence in gastric cancer[J]. Oncogene, 2022, 41(1): 26-36. doi: 10.1038/s41388-021-02067-y
|
| [21] |
FUNATO N, YANAGISAWA H. TBX1 targets the miR-200-ZEB2 axis to induce epithelial differentiation and inhibit stem cell properties[J]. Sci Rep, 2022, 12(1): 20188. DOI: 10.1038/s41598-022-24604-9.
|
| [22] |
GOLLAVILLI P N, PARMA B, SIDDIQUI A, et al. The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter[J]. Oncogene, 2021, 40(12): 2309-2322. doi: 10.1038/s41388-021-01708-6
|
| [23] |
CHONG Z X, HO W Y, YEAP S K. Deciphering the roles of non-coding RNAs in liposarcoma development: challenges and opportunities for translational therapeutic advances[J]. Noncoding RNA Res, 2025, 11: 73-90. doi: 10.1016/j.ncrna.2024.11.005
|
| [24] |
NILSEN A, HILLESTAD T, SKINGEN V E, et al. miR-200a/b/-429 downregulation is a candidate biomarker of tumor radioresistance and independent of hypoxia in locally advanced cervical cancer[J]. Mol Oncol, 2022, 16(6): 1402-1419. doi: 10.1002/1878-0261.13184
|
| [25] |
CHOI P W, BAHRAMPOUR A, NG S K, et al. Characterization of miR-200 family members as blood biomarkers for human and laying hen ovarian cancer[J]. Sci Rep, 2020, 10(1): 20071. DOI: 10.1038/s41598-020-77068-0.
|
| [26] |
THI CHUNG DUONG T, NGUYEN T H N, THI NGOC NGUYEN T, et al. Diagnostic and prognostic value of miR-200 family in breast cancer: a meta-analysis and systematic review[J]. Cancer Epidemiol, 2022, 77: 102097. DOI: 10.1016/j.canep.2022.102097.
|
| [27] |
RAMIREZ-MOYA J, BAKER A R, SLACK F J, et al. ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity[J]. Oncogene, 2020, 39(18): 3738-3753. doi: 10.1038/s41388-020-1248-x
|
| [28] |
GHEIDARI F, AREFIAN E, SAADATPOUR F, et al. The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway[J]. Mol Biol Rep, 2022, 49(12): 11855-11866. doi: 10.1007/s11033-022-07903-2
|
| [29] |
NOVIKOV N M, ZOLOTARYOVA S Y, GAUTREAU A M, et al. Mutational drivers of cancer cell migration and invasion[J]. Br J Cancer, 2021, 124(1): 102-114. doi: 10.1038/s41416-020-01149-0
|
| [30] |
UHAN S, HAUPTMAN N. Metastatic EMT phenotype is governed by microrna-200-mediated competing endogenous RNA networks[J]. Cells, 2021, 11(1): 73. DOI: 10.3390/cells11010073.
|
| [31] |
ALAM F, MEZHAL F, EL HASASNA H, et al. The role of p53-microRNA 200-Moesin axis in invasion and drug resistance of breast cancer cells[J]. Tumour Biol, 2017, 39(9): 1010428317714634. DOI: 10.1177/1010428317714634.
|
| [32] |
LI D, WANG H, SONG H, et al. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells[J]. Oncotarget, 2017, 8(49): 85276-85289. doi: 10.18632/oncotarget.19205
|
| [33] |
CHEON I, LEE S, OH S, et al. miR-200-mediated inactivation of cancer-associated fibroblasts via targeting of NRP2-VEGFR signaling attenuates lung cancer invasion and metastasis[J]. Mol Ther Nucleic Acids, 2024, 35(2): 102194. DOI: 10.1016/j.omtn.2024.102194.
|
| [34] |
JING Y, LIANG W, LIU J, et al. Autophagy-mediating microRNAs in cancer chemoresistance[J]. Cell Biol Toxicol, 2020, 36(6): 517-536. doi: 10.1007/s10565-020-09553-1
|
| [35] |
YU S J, YANG L, HONG Q, et al. MicroRNA-200a confers chemoresistance by antagonizing TP53INP1 and YAP1 in human breast cancer[J]. BMC Cancer, 2018, 18(1): 1-11. doi: 10.1186/s12885-017-3892-2
|
| [36] |
PENG F, HE R, LIU Y, et al. MiR-200b-3p elevates 5-FU sensitivity in cholangiocarcinoma cells via autophagy inhibition by targeting KLF4[J]. Noncoding RNA Res, 2024, 9(4): 1098-1110. doi: 10.1016/j.ncrna.2024.06.004
|
| [37] |
FRISK N L S, SORENSEN A E, PEDERSEN O B V, et al. Circulating microRNAs for early diagnosis of ovarian cancer: a systematic review and meta-analysis[J]. Biomolecules, 2023, 13(5): 871. doi: 10.3390/biom13050871
|
| [38] |
FERNEZA S, FETSYCH M, SHULIAK R, et al. Clinical significance of microRNA-200 and let-7 families expression assessment in patients with ovarian cancer[J]. Ecancermedicalscience, 2021, 15: 1249. DOI: 10.3332/ecancer.2021.1249.
|
| [39] |
CITTELLY D M, DIMITROVA I, HOWE E N, et al. Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel[J]. Mol Cancer Ther, 2012, 11(12): 2556-2565. doi: 10.1158/1535-7163.MCT-12-0463
|
| [40] |
LIU J, ZHANG X, HUANG Y, et al. miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases[J]. Oncol Lett, 2019, 17(2): 1453-1460.
|
| [41] |
CHEN H, XIA B, LIU T, et al. KIAA0101, a target gene of miR-429, enhances migration and chemoresistance of epithelial ovarian cancer cells[J]. Cancer Cell Int, 2016, 16: 1-11.
|
| [42] |
SHAKER F, RAZI S, REZAEI N. Circulating miRNA and circulating tumor DNA application as liquid biopsy markers in gastric cancer[J]. Clin Biochem, 2024, 129: 110767. DOI: 10.1016/j.clinbiochem.2024.110767.
|
| [43] |
LIU L, LI P, WANG Q, et al. Diagnosis accuracy of the miR-200 family tumor marker series in ovarian cancer: a systematic review and meta-analysis[J]. Transl Cancer Res, 2022, 11(7): 2283-2290. doi: 10.21037/tcr-22-864
|
| [44] |
GUAN W, CUI H, HUANG P, et al. miR-200b/200a/429 cluster stimulates ovarian cancer development by targeting ING5[J]. J Oncol, 2020, 2020(1)3404059. DOI: 10.1155/2020/3404059.
|