Volume 19 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
CHEN Guo-xiang, LI Jun, WEI Hua, YANG Jing, LI Guang-zhi, HUANG Bin, SU Shi-xiang, CAO Cong. Exploration of general practitioner training model based on artificial intelligence technology[J]. Chinese Journal of General Practice, 2021, 19(2): 167-170. doi: 10.16766/j.cnki.issn.1674-4152.001758
Citation: CHEN Guo-xiang, LI Jun, WEI Hua, YANG Jing, LI Guang-zhi, HUANG Bin, SU Shi-xiang, CAO Cong. Exploration of general practitioner training model based on artificial intelligence technology[J]. Chinese Journal of General Practice, 2021, 19(2): 167-170. doi: 10.16766/j.cnki.issn.1674-4152.001758

Exploration of general practitioner training model based on artificial intelligence technology

doi: 10.16766/j.cnki.issn.1674-4152.001758
Funds:

 JGY2020166

 2020JGB309

 2020JGZ141

 2019JGA264

 JA2019-06

  • Received Date: 2020-08-12
    Available Online: 2022-02-19
  • General practitioners (GPs) aim at maintaining the health of residents. They can supply the health service needs of residents in their communities and provide them with treatment, health knowledge popularization, disease prevention and other health services. China's general practice is in a rapid development stage. In recent years, our country has also been increasing the investment in the social medical field and general practice teaching in colleges and universities. However, the number of GPs is seriously insufficient and the medical level is limited, which restricts the improvement of basic medical and health services. Moreover, during the training of GPs, it faces various challenges such as insufficient teachers, a single training model, insufficient frontiers of teaching content, insufficient breadth of knowledge involved, difficulties in continuing education, and low professional appeal. Therefore, the model and training system need to be further improved and enriched. With the continuous development of science and technology, artificial intelligence (AI) has made great achievements in education, medicine and other fields, which also brings new opportunities for the reform of the training mode of general practitioners in China. AI has many advantages such as mass integration, information mining, and personalization. Taking the AI express train to comprehensively empower GP training will greatly enrich the training mode of GPs and effectively enhance the professional appeal of GPs. It is very important to promote the cultivation of qualified, reliable and high-level GPs in batches and the construction of excellent GPs at the grassroots level. The purpose of this article is to present the problems faced in the training of traditional GPs, to discover the opportunity of combining AI and GP training, to explore new solutions of GP training based on AI technology, so as to provide reference for AI to assist the training of GPs in China, and to carry out the development prospects and development directions of this model looking forward.

     

  • loading
  • [1]
    李献青, 张玲. 公共健康视域下全科医生健康管理与指导能力的培养[J]. 保健医学研究与实践, 2020, 17(4): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GXBJ202004018.htm
    [2]
    国家卫生和计划生育委员会. 2017中国卫生和计划生育统计年鉴[M]. 北京: 中国协和医科大学出版社, 2017: 40.
    [3]
    雷秋瑾, 彭贵珍. 试论发达国家全科医生培养模式对我国的启示[J]. 南京中医药大学学报(社会科学版), 2018, 19(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZD201801010.htm
    [4]
    高清晓, 宋月雁, 丁国锋. 澳大利亚全科医生培养模式对中国的启示[J]. 中国继续医学教育, 2020, 12(32): 89-93. doi: 10.3969/j.issn.1674-9308.2020.32.025
    [5]
    刘晓君, 吴明洋, 张琎, 等. 我国基层全科医学的建设现状与政策研究[J]. 中国卫生事业管理, 2017, 34(1): 47-50, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSG201701017.htm
    [6]
    武宁, 程明羕, 闫丽娜, 等. 中国全科医生培养发展报告(2018)[J]. 中国全科医学, 2018, 21(10): 1135-1142. doi: 10.3969/j.issn.1007-9572.2018.10.001
    [7]
    赵欣欣, 李觉, 吴恒璟. 社区全科医生科研培养路径的实践与思考[J]. 中华全科医学, 2019, 17(12): 1979-1981, 2091. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201912001.htm
    [8]
    徐跃, 汪蕾, 赵因. 轨道式医学人才培养模式-对继续教育衔接问题的探讨[J]. 继续医学教育, 2018, 32(11): 2-3. doi: 10.3969/j.issn.1004-6763.2018.11.002
    [9]
    孟晓宇, 王忠民, 景慎旗, 等. 医疗人工智能的发展与挑战[J]. 中国数字医学, 2019, 14(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YISZ201903007.htm
    [10]
    韩佳丽, 丰雷. 人工智能在抑郁症领域中应用的研究进展[J]. 北京医学, 2020, 42(4): 317-319, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYX202004014.htm
    [11]
    赵晓飞, 王红强, 高延征, 等. 机器人辅助微创通道下经椎间孔腰椎椎间融合术治疗腰椎退行性疾病临床分析[J]. 中华实用诊断与治疗杂志, 2020, 34(2): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202002011.htm
    [12]
    刘颖, 蒋国平, 任菁菁. 我国全科医生培养现状与发展策略[J]. 中国工程科学, 2019, 21(2): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201902013.htm
    [13]
    郝立晓, 王婷, 陈丽芬, 等. 全科医学学科知识和技能体系研究[J]. 中国全科医学, 2018, 21(19): 2269-2276. doi: 10.12114/j.issn.1007-9572.2018.19.001
    [14]
    韩一平, 张从昕, 刘燕敏, 等. 基于大数据技术的全科医学教育改革与研究[J]. 中华全科医学, 2017, 15(7): 1093-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201707001.htm
    [15]
    闻婷玉, 梁冰, 李苗. 全科规培学员人文素质培养的探索与初步实践[J]. 中华全科医学, 2020, 18(4): 670-673. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202004040.htm
    [16]
    王潜, 左君丽, 顾政平, 等. 社区在职全科医生继续医学教育现况[J]. 解放军医院管理杂志, 2019, 26(4): 381-385. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYG201904027.htm
    [17]
    杨慧敏, 尹德卢, 辛倩倩, 等. 我国基层全科医生队伍现状和继续医学教育内容需求分析[J]. 中华全科医学, 2018, 16(10): 1591-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201810001.htm
    [18]
    杨宇迪. 中国全科医生职业吸引力研究[D]. 武汉: 华中科技大学, 2019.
    [19]
    刘忠仁, 李壮, 邓树嵩. 民族地区全科医生转岗培训的现状调查及效果评价[J]. 右江医学, 2019, 47(1): 56-59. doi: 10.3969/j.issn.1003-1383.2019.01.015
    [20]
    郑艳玲, 余芳, 陈艳黎, 等. 我国全科医生离职意愿及其影响因素分析[J]. 中华全科医学, 2019, 17(9): 1543-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201909032.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (383) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return