Citation: | YUAN Bo, DAI Hua, WU Jia, FU Wen-jun, WEN Juan, ZHAO Qian. Application of artificial intelligence applications in general practice[J]. Chinese Journal of General Practice, 2021, 19(9): 1433-1436,1572. doi: 10.16766/j.cnki.issn.1674-4152.002079 |
[1] |
德勤科技.2021全球人工智能发展白皮书[R]. 上海:德勤科技, 2019.
|
[2] |
中国电子技术标准化研究院.人工智能标准化白皮书(2018版)[R]. 2018.
|
[3] |
于晓松.新中国成立70年以来中国全科医学发展与展望[J]. 中华全科医学, 2019, 17(11):1797-1799. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201911001.htm
|
[4] |
ENSHAEI A, ROBSON C N, EDMONDSON R J.Artificial intelligence systems as prognostic and predictive tools in ovarian cancer[J]. Ann Surg Oncol, 2015, 22(12):3970-3975. doi: 10.1245/s10434-015-4475-6
|
[5] |
GOLDEN J A.Deep learning algorithms for detection of lymph node metastases from breast cancer:Helping artificial intelligence be seen[J]. JAMA, 2017, 318(22):2184-2186. doi: 10.1001/jama.2017.14580
|
[6] |
GULSHAN V, PENG L, CORAM M, et al.Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22):2402-2410. doi: 10.1001/jama.2016.17216
|
[7] |
XU Y M, ZHANG T, XU H, et al.Deep learning in CT images:Automated pulmonary nodule detection for subsequent management using convolutional neural network[J]. Cancer Manag Res, 2020, 12:2979-2992. doi: 10.2147/CMAR.S239927
|
[8] |
SHEN J, ZHANG C, JIANG B, et al.Artificial intelligence versus clinicians in disease diagnosis:Systematic review[J]. JMIR Med Inform, 2019, 7(3):e10010. doi: 10.2196/10010
|
[9] |
杨柯, 汪志涛.人工智能赋能下的社区居家养老服务模式构建研究[J]. 云南行政学院学报, 2020, 22(3):145-152. doi: 10.3969/j.issn.1671-0681.2020.03.021
|
[10] |
WALLIS C.How artificial intelligence will change medicine[J]. Nature, 2019, 576(7787):S48. doi: 10.1038/d41586-019-03845-1
|
[11] |
BUTOW P, HOQUE E.Using artificial intelligence to analyse and teach communication in healthcare[J]. Breast, 2020, 50:49-55. doi: 10.1016/j.breast.2020.01.008
|
[12] |
上海交通大学人工智能研究院.中国人工智能医疗白皮书[R]. 2019.
|
[13] |
BRISIMI T S, XU T, WANG T, et al.Predicting chronic disease hospitalizations from electronic health records: An interpretable classification approach[J]. Proc IEEE Inst Electr Electron Eng, 2018, 106(4):690-707. doi: 10.1109/JPROC.2017.2789319
|
[14] |
YU K H, BEAM A L, KOHANE I S.Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2(10):719-731. doi: 10.1038/s41551-018-0305-z
|
[15] |
DESAI A N.Artificial Intelligence:Promise, pitfalls, and perspective[J]. JAMA, 2020, 323(24):2448-2449. doi: 10.1001/jama.2020.8737
|
[16] |
RUBIN R.Obstacles to implementing AI tools in health care[J]. JAMA, 2021, 325(4):333.
|
[17] |
MINTZ Y, BRODIE R.Introduction to artificial intelligence in medicine[J]. Minim Invasive Ther Allied Technol, 2019, 28(2):73-81. doi: 10.1080/13645706.2019.1575882
|
[18] |
胡智博.人工智能在医学领域应用的现状与展望[J]. 电子元器件与信息技术, 2020, 4(12):61-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXU202012030.htm
|
[19] |
HOSNY A, PARMAR C, QUACKENBUSH J, et al.Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8):500-510. doi: 10.1038/s41568-018-0016-5
|
[20] |
ZAKHEM G A, MOTOSKO C C, HO R S.How should artificial intelligence screen for skin cancer and deliver diagnostic predictions to patients?[J]. JAMA Dermatol, 2018, 154(12):1383-1384. doi: 10.1001/jamadermatol.2018.2714
|
[21] |
SUMMERTON N, CANSDALE M.Artificial intelligence and diagnosis in general practice[J]. Br J Gen Pract, 2019, 69(684):324-325. doi: 10.3399/bjgp19X704165
|
[22] |
ZHOU M, WANG H, ZENG X, et al.Mortality, morbidity, and risk factors in China and its provinces, 1990-2017:A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204):1145-1158. doi: 10.1016/S0140-6736(19)30427-1
|
[23] |
崔骥, 许家佗.人工智能背景下中医诊疗技术的应用与展望[J]. 第二军医大学学报, 2018, 39(8):846-851. https://www.cnki.com.cn/Article/CJFDTOTAL-DEJD201808010.htm
|
[24] |
GUO Y, REN X, CHEN Y X, et al Artificial intelligence meets Chinese medicine[J]. Chin J Integr Med, 2019, 25(9):648-653. doi: 10.1007/s11655-019-3169-5
|
[25] |
MORTAZAVI B J, BUCHOLZ E M, DESAI N R, et al.Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention[J]. JAMA Netw Open, 2019, 2(7):e196835. doi: 10.1001/jamanetworkopen.2019.6835
|
[26] |
CHEN T, LI X, LI Y, et al.Prediction and risk stratification of kidney outcomes in IgA nephropathy[J]. Am J Kidney Dis, 2019, 74(3):300-309. doi: 10.1053/j.ajkd.2019.02.016
|
[27] |
陈国湘, 李俊, 韦华, 等.基于人工智能技术的全科医生培养模式探索[J]. 中华全科医学, 2021, 19(2):167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202102001.htm
|
[28] |
邢珍珍.人工智能赋能下社区智慧养老服务模式及关键技术研究[J]. 护理研究, 2021, 35(9):1573-1579. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHZ202109013.htm
|
[29] |
郝晓宁, 马骋宇, 刘志业, 等.医患双方对基层医疗卫生信息化建设的满意度研究[J]. 卫生经济研究, 2020, 37(7):6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJJ202007003.htm
|
[30] |
陈国湘, 李俊, 韦华, 等.基于人工智能技术的全科医生培养模式探索[J]. 中华全科医学, 2021, 19(2):167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202102001.htm
|
[31] |
樊荣荣, 施晓雷, 孙安, 等.人工智能在住院医师规范化培养中的应用价值探讨[J]. 肿瘤影像学, 2018, 27(4):261-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYX201804004.htm
|
[32] |
SIM S, CHO M.Convergence model of AI and IoT for virus disease control system[J]. Pers Ubiquitous Comput, 2021.DOI: 10.1007/s00779-021-01577-6.
|
[33] |
欧阳丽炜, 袁勇, 郑心湖, 等.基于区块链的传染病监测与预警技术[J]. 智能科学与技术学报, 2020, 2(2):135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJS202002005.htm
|
[34] |
耿相珍, 曹银杰.基于人工智能的社区矫正定位系统[J]. 现代计算机, 2020(12):48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS202012009.htm
|
[35] |
LI X, KRUMHOLZ H M, YIP W, et al.Quality of primary health care in China:Challenges and recommendations[J]. Lancet, 2020, 395(10239):1802-1812. doi: 10.1016/S0140-6736(20)30122-7
|
[36] |
HOPCROFT K.Artificial intelligence may not recognise the nuances of general practice[J]. BMJ, 2018, 363:k5205. http://www.ncbi.nlm.nih.gov/pubmed/30563916
|
[37] |
Anticipating artificial intelligence[J]. Nature, 2016, 532(7600):413.
|