Citation: | WANG Xiao-jing, ZHANG Hui, LI Lian-you, FU Wei-ling, ZHANG Yang. Research progress and application of Raman spectroscopy in virus detection[J]. Chinese Journal of General Practice, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109 |
[1] |
LION T. Adenovirus infections in immunocompetent and immunocompromised patients[J]. Clin Microbiol Rev, 2014, 27(3): 441-462. doi: 10.1128/CMR.00116-13
|
[2] |
TRENTIN J, YABE Y, TAYLOR G. The quest for human cancer viruses: A new approach to an old problem reveals cancer induction in hamsters by human adenovirus[J]. Science, 1962, 137(3533): 835-841. doi: 10.1126/science.137.3533.835
|
[3] |
LI Y Q, ZHU B, LI Y, et al. A synergistic capture strategy for enhanced detection and elimination of bacteria[J]. Angew Chem Int Ed Engl, 2014, 53(23): 5837-5841. doi: 10.1002/anie.201310135
|
[4] |
YANIK A, HUANG M, KAMOHARA O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media[J]. Nano Lett, 2010, 10(12): 4962-4969. doi: 10.1021/nl103025u
|
[5] |
LIN C, LIU Y, YAN H. Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing[J]. Nano Lett, 2007, 7(2): 507-512. doi: 10.1021/nl062998n
|
[6] |
ISON M. Emerging infections: Adenovirus iInfections in transplant recipients[J]. Clin Infect Dis, 2006, 43(3): 331-339. doi: 10.1086/505498
|
[7] |
LION T, BAUMGARTINGER R, WATZINGER F, et al. Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease[J]. Blood, 2003, 102(3): 1114-1120. doi: 10.1182/blood-2002-07-2152
|
[8] |
ECHAVARRIA M, FORMAN M, TOL M, et al. Prediction of severe disseminated adenovirus infection by serum PCR[J]. Lancet, 2001, 358(9279): 384-385. doi: 10.1016/S0140-6736(01)05580-5
|
[9] |
李睿, 周金池, 卢存福. 拉曼光谱在生物学领域的应用[J]. 生物技术通报, 2009(12): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT200912016.htm
|
[10] |
贾潇潇, 李晶, 秦天, 等. 表面增强拉曼光谱技术在微生物鉴定中的应用进展[J]. 生物工程学报, 2015, 31(5): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU201505002.htm
|
[11] |
FERREIRA J, COSTA S. Electronic excited-state behavior of rhodamine 3B in AOT reverse micelles sensing contact ion pair to solvent separated ion pair interconversion[J]. J Phys Chem B, 2010, 114(32): 10417-10426. doi: 10.1021/jp100571t
|
[12] |
SONG J, DUAN B, WANG C, et al. SERS-encoded nanogapped plasmonic nanoparticles: Growth of metallic nanoshell by templating redox-active polymer brushes[J]. J Am Chem Soc, 2014, 136(19): 6838-6841. doi: 10.1021/ja502024d
|
[13] |
SCHLÜCKER S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angew Chem Int Ed Engl, 2014, 53(19): 4756-4795. doi: 10.1002/anie.201205748
|
[14] |
SÁNCHEZ-PURRÀ M, CARRÉ-CAMPS M, PUIG H, et al. Surface-enhanced Raman spectroscopy-based sandwich immunoassays for multiplexed detection of Zika and Dengue viral biomarkers[J]. ACS Infec Dis, 2017, 3(10): 767-776. doi: 10.1021/acsinfecdis.7b00110
|
[15] |
GUZMAN M G, HALSTEAD S B, ARTSOB H, et al. Dengue: A continuing global threat[J]. Nat Rev Microbiol, 2010, 8(12 Suppl): S7-S16. http://europepmc.org/abstract/MED/21079655
|
[16] |
LESSLER J, CHAISSON L H, KUCIRKA L M, et al. Assessing the global threat from Zika virus[J]. Science, 2016, 353(6300): 8160. doi: 10.1126/science.aaf8160
|
[17] |
KOH M T, EG K P, LOH S S. Hospitalised malaysian children with pandemic (H1N1) 2009 influenza: Clinical characteristics, risk factors for severe disease and comparison with the 2002-2007 seasonal influenza[J]. Singapore Med J, 2016, 57(2): 81-86. doi: 10.11622/smedj.2015146
|
[18] |
PARK M, WU P, GOLDSTEIN E, et al. Influenza-associated excess mortality in south korea[J]. Am J Prev Med, 2016, 50(4): e111-e119. doi: 10.1016/j.amepre.2015.09.028
|
[19] |
THOMPSON W W, SHAY D K, WEINTRAUB E, et al. Mortality associated with influenza and respiratory syncytial virus in the United States[J]. JAMA, 2003, 289(2): 179-186. doi: 10.1001/jama.289.2.179
|
[20] |
LIM J Y, NAM J S, SHIN H, et al. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis[J]. In Anal Chem, 2019, 91(9): 5677-5684. doi: 10.1021/acs.analchem.8b05533
|
[21] |
KUKUSHKIN V I, IVANOV N M, NOVOSELTSEVA A A, et al. Highly sensitive detection of influenza virus with SERS aptasensor[J]. PLoS One, 2019, 14(4): e0216247. doi: 10.1371/journal.pone.0216247
|
[22] |
MOON J S, KIM W G, SHIN D M, et al. Bioinspired M-13 bacteriophage-based photonic nose for differential cell recognition[J]. Chem Sci, 2017, 8(2): 921-927. doi: 10.1039/C6SC02021F
|
[23] |
LEE J H, XU P W, DOMAILLE D, et al. M13 Bacteriophage as materials for amplified surface enhanced Raman scattering protein sensing[J]. Advanced Functional Materials, 2014, 24(14): 2079-2084. doi: 10.1002/adfm.201303331
|
[24] |
WANG J, YANG M, ZHU Y, et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds[J]. Adv Mater, 2014, 26(29): 4961-4966. doi: 10.1002/adma.201400154
|
[25] |
JONG S M, WON GEUN K, CHUNTAE K, et al. M-13 bacteriophage based structural color sensor for detecting antibiotics[J]. Sens Actuators B-chem, 2017, 240: 757-762. doi: 10.1016/j.snb.2016.09.050
|
[26] |
KOH E H, MUN C, KIM C, et al. M13 Bacteriophage/Silver nanowire surface-enhanced Raman scattering sensor for sensitive and selective pesticide detection[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10388-10397. doi: 10.1021/acsami.8b01470
|
[27] |
PARK S G, MUN C, LEE M, et al. 3D Hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors[J]. Adv Mater, 2015, 27(29): 4290-4295. doi: 10.1002/adma.201501587
|
[28] |
WEISS R. How does HIV cause AIDS?[J]. Science, 1993, 260(5112): 1273-1279. doi: 10.1126/science.8493571
|
[29] |
LEE J H, KIM B C, OH B K, et al. Rapid and sensitive determination of HIV-1 virus based on surface enhanced Raman spectroscopy[J]. J Biomed Nanotechnol, 2015, 11(12): 2223-2230. doi: 10.1166/jbn.2015.2117
|
[30] |
YUAN Z, ZHU W, CHEN Y, et al. Serological surveillance of H5 and H9 avian influenza a viral infections among pigs in Southern China[J]. Microb Pathog, 2013, 64: 39-42. doi: 10.1016/j.micpath.2013.08.001
|
[31] |
PEPIN K M, WANG J, WEBB C T, et al. Multiannual patterns of influenza a transmission in Chinese live bird market systems[J]. Influenza Other Respir Viruses, 2013, 7(1): 97-107. doi: 10.1111/j.1750-2659.2012.00354.x
|
[32] |
XIAO M, XIE K, DONG X, et al. Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips[J]. Anal Chim Acta, 2019, 11: 1053. http://www.onacademic.com/detail/journal_1000041580389299_b142.html
|
[33] |
KILLIAN M L. Hemagglutination assay for the avian influenza Virus[J]. Avian Influenza Virus, 2008, 436: 47-52. doi: 10.1007/978-1-59745-279-3_7
|
[34] |
STANG P, BRANDENBURG N, CARTER B. The economic burden of respiratory syncytial virus-associated bronchiolitis hospitalizations[J]. Arch Pediatr Adolesc Med, 2001, 155(1): 95-96. doi: 10.1001/archpedi.155.1.95
|
[35] |
GÓMEZ R S, MORA J E, CORTÉS C M, et al. Respiratory syncytial virus detection in cells and clinical samples by using three new monoclonal antibodies[J]. J Med Virol, 2014, 86(7): 1256-1266. doi: 10.1002/jmv.23807
|
[36] |
BONT L, VERSTEEGH J, SWELSEN W, et al. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity[J]. Pediatr Res, 2002, 52(3): 363-367. doi: 10.1203/00006450-200209000-00009
|
[37] |
CHANG J, BRACIALE T J. Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract[J]. Nat Med, 2002, 8(1): 54-60. doi: 10.1038/nm0102-54
|
[38] |
BRACIALE T J. Respiratory syncytial virus and T cells: Interplay between the virus and the host adaptive immune system[J]. Proc Am Thorac Soc, 2005, 2(2): 141-146. doi: 10.1513/pats.200503-022AW
|
[39] |
JAYAGOPAL A, HALFPENNY K C, PEREZ J W, et al. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells[J]. J Am Chem Soc, 2010, 132(28): 9789-9796. doi: 10.1021/ja102585v
|
[40] |
PEREZ J W, VARGIS E A, RUSS P K, et al. Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction[J]. Anal Biochem, 2011, 410(1): 141-148. doi: 10.1016/j.ab.2010.11.033
|
[41] |
ZHAN L, ZHEN S J, WAN X Y, et al. A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus[J]. Talanta, 2016, 148: 308-312. doi: 10.1016/j.talanta.2015.10.081
|
[42] |
LEONG J, LIN D, NGUYEN M H. Hepatitis B surface antigen escape mutations: Indications for initiation of antiviral therapy revisited[J]. World J Clin Cases, 2016, 4(3): 71-75. doi: 10.12998/wjcc.v4.i3.71
|
[43] |
WEBER B. Recent developments in the diagnosis and monitoring of HBV infection and role of the genetic variability of the S gene[J]. Expert Rev Mol Diagn, 2005, 5(1): 75-91. doi: 10.1586/14737159.5.1.75
|
[44] |
YANG L, SONG L W, FANG L L, et al. Evaluation of a novel chemiluminescent microplate enzyme immunoassay for hepatitis B surface antigen detection[J]. J Virol Methods, 2016, 228: 55-59. doi: 10.1016/j.jviromet.2015.11.013
|
[45] |
LU Y, LIN Y, ZHENG Z, et al. Label free hepatitis B detection based on serum derivative surface enhanced Raman spectroscopy combined with multivariate analysis[J]. Biomed Opt Express, 2018, 9(10): 4755-4766. doi: 10.1364/BOE.9.004755
|