Volume 19 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
WANG Xiao-jing, ZHANG Hui, LI Lian-you, FU Wei-ling, ZHANG Yang. Research progress and application of Raman spectroscopy in virus detection[J]. Chinese Journal of General Practice, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109
Citation: WANG Xiao-jing, ZHANG Hui, LI Lian-you, FU Wei-ling, ZHANG Yang. Research progress and application of Raman spectroscopy in virus detection[J]. Chinese Journal of General Practice, 2021, 19(9): 1549-1552, 1588. doi: 10.16766/j.cnki.issn.1674-4152.002109

Research progress and application of Raman spectroscopy in virus detection

doi: 10.16766/j.cnki.issn.1674-4152.002109
Funds:

 2017YFC0909602

 81701183

 81430054

 SWH2016ZDCX4204

 SWH2017ZDCX4210

  • Received Date: 2020-06-21
    Available Online: 2022-02-15
  • Viruses can cause humans to suffer from infectious diseases, conventional methods for detecting viruses are cumbersome, insensitive, and time-consuming. New, simple, rapid, and highly sensitive virus detection methods are urgently needed. In recent years, surface enhanced Raman spectroscopy (SERS) has shown great application prospects in the biomedical field due to its unique advantages such as fingerprinting, high resolution, and non-destructive testing. Among them, Raman spectroscopy is expected to obtain disruptive technological innovations in the rapid identification and drug resistance analysis of pathogenic microorganisms. This paper focuses on the research progress of Raman spectroscopy in virus detection, starting with the technical methods applied in Raman spectroscopy. The application examples of SERS based technology in Zika virus, dengue virus, influenza virus, M13 bacteriophage, human immunodeficiency virus, avian influenza virus, respiratory syncytial virus and hepatitis B virus (HBV) are summarized in detail, and the application prospects of SERS technology in clinical examination are also forecasted. By reviewing the application of SERS detection technology in different viruses, this paper hopes to provide new ideas for clinical researchers to develop new rapid, simple and sensitive virus detection methods, and provide a new technology for early detection of virus in clinical laboratories.

     

  • loading
  • [1]
    LION T. Adenovirus infections in immunocompetent and immunocompromised patients[J]. Clin Microbiol Rev, 2014, 27(3): 441-462. doi: 10.1128/CMR.00116-13
    [2]
    TRENTIN J, YABE Y, TAYLOR G. The quest for human cancer viruses: A new approach to an old problem reveals cancer induction in hamsters by human adenovirus[J]. Science, 1962, 137(3533): 835-841. doi: 10.1126/science.137.3533.835
    [3]
    LI Y Q, ZHU B, LI Y, et al. A synergistic capture strategy for enhanced detection and elimination of bacteria[J]. Angew Chem Int Ed Engl, 2014, 53(23): 5837-5841. doi: 10.1002/anie.201310135
    [4]
    YANIK A, HUANG M, KAMOHARA O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media[J]. Nano Lett, 2010, 10(12): 4962-4969. doi: 10.1021/nl103025u
    [5]
    LIN C, LIU Y, YAN H. Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing[J]. Nano Lett, 2007, 7(2): 507-512. doi: 10.1021/nl062998n
    [6]
    ISON M. Emerging infections: Adenovirus iInfections in transplant recipients[J]. Clin Infect Dis, 2006, 43(3): 331-339. doi: 10.1086/505498
    [7]
    LION T, BAUMGARTINGER R, WATZINGER F, et al. Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease[J]. Blood, 2003, 102(3): 1114-1120. doi: 10.1182/blood-2002-07-2152
    [8]
    ECHAVARRIA M, FORMAN M, TOL M, et al. Prediction of severe disseminated adenovirus infection by serum PCR[J]. Lancet, 2001, 358(9279): 384-385. doi: 10.1016/S0140-6736(01)05580-5
    [9]
    李睿, 周金池, 卢存福. 拉曼光谱在生物学领域的应用[J]. 生物技术通报, 2009(12): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT200912016.htm
    [10]
    贾潇潇, 李晶, 秦天, 等. 表面增强拉曼光谱技术在微生物鉴定中的应用进展[J]. 生物工程学报, 2015, 31(5): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU201505002.htm
    [11]
    FERREIRA J, COSTA S. Electronic excited-state behavior of rhodamine 3B in AOT reverse micelles sensing contact ion pair to solvent separated ion pair interconversion[J]. J Phys Chem B, 2010, 114(32): 10417-10426. doi: 10.1021/jp100571t
    [12]
    SONG J, DUAN B, WANG C, et al. SERS-encoded nanogapped plasmonic nanoparticles: Growth of metallic nanoshell by templating redox-active polymer brushes[J]. J Am Chem Soc, 2014, 136(19): 6838-6841. doi: 10.1021/ja502024d
    [13]
    SCHLÜCKER S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angew Chem Int Ed Engl, 2014, 53(19): 4756-4795. doi: 10.1002/anie.201205748
    [14]
    SÁNCHEZ-PURRÀ M, CARRÉ-CAMPS M, PUIG H, et al. Surface-enhanced Raman spectroscopy-based sandwich immunoassays for multiplexed detection of Zika and Dengue viral biomarkers[J]. ACS Infec Dis, 2017, 3(10): 767-776. doi: 10.1021/acsinfecdis.7b00110
    [15]
    GUZMAN M G, HALSTEAD S B, ARTSOB H, et al. Dengue: A continuing global threat[J]. Nat Rev Microbiol, 2010, 8(12 Suppl): S7-S16. http://europepmc.org/abstract/MED/21079655
    [16]
    LESSLER J, CHAISSON L H, KUCIRKA L M, et al. Assessing the global threat from Zika virus[J]. Science, 2016, 353(6300): 8160. doi: 10.1126/science.aaf8160
    [17]
    KOH M T, EG K P, LOH S S. Hospitalised malaysian children with pandemic (H1N1) 2009 influenza: Clinical characteristics, risk factors for severe disease and comparison with the 2002-2007 seasonal influenza[J]. Singapore Med J, 2016, 57(2): 81-86. doi: 10.11622/smedj.2015146
    [18]
    PARK M, WU P, GOLDSTEIN E, et al. Influenza-associated excess mortality in south korea[J]. Am J Prev Med, 2016, 50(4): e111-e119. doi: 10.1016/j.amepre.2015.09.028
    [19]
    THOMPSON W W, SHAY D K, WEINTRAUB E, et al. Mortality associated with influenza and respiratory syncytial virus in the United States[J]. JAMA, 2003, 289(2): 179-186. doi: 10.1001/jama.289.2.179
    [20]
    LIM J Y, NAM J S, SHIN H, et al. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis[J]. In Anal Chem, 2019, 91(9): 5677-5684. doi: 10.1021/acs.analchem.8b05533
    [21]
    KUKUSHKIN V I, IVANOV N M, NOVOSELTSEVA A A, et al. Highly sensitive detection of influenza virus with SERS aptasensor[J]. PLoS One, 2019, 14(4): e0216247. doi: 10.1371/journal.pone.0216247
    [22]
    MOON J S, KIM W G, SHIN D M, et al. Bioinspired M-13 bacteriophage-based photonic nose for differential cell recognition[J]. Chem Sci, 2017, 8(2): 921-927. doi: 10.1039/C6SC02021F
    [23]
    LEE J H, XU P W, DOMAILLE D, et al. M13 Bacteriophage as materials for amplified surface enhanced Raman scattering protein sensing[J]. Advanced Functional Materials, 2014, 24(14): 2079-2084. doi: 10.1002/adfm.201303331
    [24]
    WANG J, YANG M, ZHU Y, et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds[J]. Adv Mater, 2014, 26(29): 4961-4966. doi: 10.1002/adma.201400154
    [25]
    JONG S M, WON GEUN K, CHUNTAE K, et al. M-13 bacteriophage based structural color sensor for detecting antibiotics[J]. Sens Actuators B-chem, 2017, 240: 757-762. doi: 10.1016/j.snb.2016.09.050
    [26]
    KOH E H, MUN C, KIM C, et al. M13 Bacteriophage/Silver nanowire surface-enhanced Raman scattering sensor for sensitive and selective pesticide detection[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10388-10397. doi: 10.1021/acsami.8b01470
    [27]
    PARK S G, MUN C, LEE M, et al. 3D Hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors[J]. Adv Mater, 2015, 27(29): 4290-4295. doi: 10.1002/adma.201501587
    [28]
    WEISS R. How does HIV cause AIDS?[J]. Science, 1993, 260(5112): 1273-1279. doi: 10.1126/science.8493571
    [29]
    LEE J H, KIM B C, OH B K, et al. Rapid and sensitive determination of HIV-1 virus based on surface enhanced Raman spectroscopy[J]. J Biomed Nanotechnol, 2015, 11(12): 2223-2230. doi: 10.1166/jbn.2015.2117
    [30]
    YUAN Z, ZHU W, CHEN Y, et al. Serological surveillance of H5 and H9 avian influenza a viral infections among pigs in Southern China[J]. Microb Pathog, 2013, 64: 39-42. doi: 10.1016/j.micpath.2013.08.001
    [31]
    PEPIN K M, WANG J, WEBB C T, et al. Multiannual patterns of influenza a transmission in Chinese live bird market systems[J]. Influenza Other Respir Viruses, 2013, 7(1): 97-107. doi: 10.1111/j.1750-2659.2012.00354.x
    [32]
    XIAO M, XIE K, DONG X, et al. Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips[J]. Anal Chim Acta, 2019, 11: 1053. http://www.onacademic.com/detail/journal_1000041580389299_b142.html
    [33]
    KILLIAN M L. Hemagglutination assay for the avian influenza Virus[J]. Avian Influenza Virus, 2008, 436: 47-52. doi: 10.1007/978-1-59745-279-3_7
    [34]
    STANG P, BRANDENBURG N, CARTER B. The economic burden of respiratory syncytial virus-associated bronchiolitis hospitalizations[J]. Arch Pediatr Adolesc Med, 2001, 155(1): 95-96. doi: 10.1001/archpedi.155.1.95
    [35]
    GÓMEZ R S, MORA J E, CORTÉS C M, et al. Respiratory syncytial virus detection in cells and clinical samples by using three new monoclonal antibodies[J]. J Med Virol, 2014, 86(7): 1256-1266. doi: 10.1002/jmv.23807
    [36]
    BONT L, VERSTEEGH J, SWELSEN W, et al. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity[J]. Pediatr Res, 2002, 52(3): 363-367. doi: 10.1203/00006450-200209000-00009
    [37]
    CHANG J, BRACIALE T J. Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract[J]. Nat Med, 2002, 8(1): 54-60. doi: 10.1038/nm0102-54
    [38]
    BRACIALE T J. Respiratory syncytial virus and T cells: Interplay between the virus and the host adaptive immune system[J]. Proc Am Thorac Soc, 2005, 2(2): 141-146. doi: 10.1513/pats.200503-022AW
    [39]
    JAYAGOPAL A, HALFPENNY K C, PEREZ J W, et al. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells[J]. J Am Chem Soc, 2010, 132(28): 9789-9796. doi: 10.1021/ja102585v
    [40]
    PEREZ J W, VARGIS E A, RUSS P K, et al. Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction[J]. Anal Biochem, 2011, 410(1): 141-148. doi: 10.1016/j.ab.2010.11.033
    [41]
    ZHAN L, ZHEN S J, WAN X Y, et al. A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus[J]. Talanta, 2016, 148: 308-312. doi: 10.1016/j.talanta.2015.10.081
    [42]
    LEONG J, LIN D, NGUYEN M H. Hepatitis B surface antigen escape mutations: Indications for initiation of antiviral therapy revisited[J]. World J Clin Cases, 2016, 4(3): 71-75. doi: 10.12998/wjcc.v4.i3.71
    [43]
    WEBER B. Recent developments in the diagnosis and monitoring of HBV infection and role of the genetic variability of the S gene[J]. Expert Rev Mol Diagn, 2005, 5(1): 75-91. doi: 10.1586/14737159.5.1.75
    [44]
    YANG L, SONG L W, FANG L L, et al. Evaluation of a novel chemiluminescent microplate enzyme immunoassay for hepatitis B surface antigen detection[J]. J Virol Methods, 2016, 228: 55-59. doi: 10.1016/j.jviromet.2015.11.013
    [45]
    LU Y, LIN Y, ZHENG Z, et al. Label free hepatitis B detection based on serum derivative surface enhanced Raman spectroscopy combined with multivariate analysis[J]. Biomed Opt Express, 2018, 9(10): 4755-4766. doi: 10.1364/BOE.9.004755
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (388) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return