Volume 19 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
JIE Shuang-shuang, DAI Li-ying. Application and research progress of near infrared spectroscopy in critically ill neonates[J]. Chinese Journal of General Practice, 2021, 19(12): 2106-2109. doi: 10.16766/j.cnki.issn.1674-4152.002248
Citation: JIE Shuang-shuang, DAI Li-ying. Application and research progress of near infrared spectroscopy in critically ill neonates[J]. Chinese Journal of General Practice, 2021, 19(12): 2106-2109. doi: 10.16766/j.cnki.issn.1674-4152.002248

Application and research progress of near infrared spectroscopy in critically ill neonates

doi: 10.16766/j.cnki.issn.1674-4152.002248
Funds:

 Z155080000004

 XZ2017ZR-ZYZ05

  • Received Date: 2020-12-28
    Available Online: 2022-03-02
  • Near infrared spectroscopy (NIRS) is a noninvasive and reliable technique for real-time monitoring of tissue oxygen saturation. Monitoring of multi-site brain and somatic oxygen saturation in intensive care unit can evaluate local tissue oxygenation and organ perfusion in critically ill newborns. Firstly, this paper briefly introduces the development history, basic principle and monitoring position of NIRS technology. Secondly, this paper discusses the development and application of NIRS technology in neonatal critical diseases such as complex congenital heart disease, neonatal hypoxic-ischemic encephalopathy, apnea and arrhythmia, neonatal periventricular/intraventricular hemorrhage, neonatal respiratory distress syndrome, necrotizing enterocolitis, neonatal acute kidney injury, erythrocyte infusion in premature infants, etc. Finally, the future application of NIRS technology is briefly discussed. NIRS technique was initially used to monitor brain oxygen saturation after neonatal brain injury and cardiac surgery to assess brain oxygenation and perfusion, early detect neonatal brain injury and related complications after cardiac surgery thus early intervention. NIRS technology is now involved in all areas of the newborn, by monitoring oxygen saturation in different parts of the brain, kidney, intestine, liver, targeted prediction of related diseases, judging the severity of the disease and the feasibility of surgery, so as to reduce the incidence and mortality of the disease and improve the prognosis and quality of life of newborns. In the future, we need to carry out more studies in different parts and different ages of neonates, to promote the early diagnosis and treatment of other neonatal diseases, such as very low birth weight infants feeding intolerance neonatal low cardiac output syndrome after cardiopulmonary bypass, shorten the process of neonatal feeding, and protect cardiopulmonary function.

     

  • loading
  • [1]
    PAVALEK L R, MUELLER C, JEBBIA M R, et al. Near-infrared spectroscopy in extremely preterm infants[J]. Front Pediatr, 2021, 8(1): 2296-2360. doi: 10.3389/fped.2020.624113/full
    [2]
    SEAGER E, LONGLEY C, ALADANGADY N, et al. Measurement of gut oxygenation in the neonatal population using near-infrared spectroscopy: A clinical tool?[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(1): 76-86. doi: 10.1136/archdischild-2018-316750
    [3]
    BRUCKNER M, PICHLER G, URLESBERGER B. NIRS in the fetal to neonatal transition and immediate postnatal period[J]. Semin Fetal Neonatal Med, 2020, 25(2): 1-6. https://pubmed.ncbi.nlm.nih.gov/32007425/
    [4]
    NASR V G, BERGERSEN L T, LIN H M, et al. Validation of a second-generation near-infrared spectroscopy monitor in children with congenital heart disease[J]. Anesth Analg, 2019, 128(4): 661-668. doi: 10.1213/ANE.0000000000002796
    [5]
    BRUNS N, MOOSMANN J, MNCH F, et al. How to administer near-infrared spectroscopy in critically ill neonates, infants, and children[J]. J Vis Exp, 2020, 19(162): 1940-2087. https://pubmed.ncbi.nlm.nih.gov/32894267/
    [6]
    VANDEKERCKHOVE K, COOMANS I, MOERMAN A, et al. Differences in cerebral and muscle oxygenation patterns during exercise in children with univentricular heart after Fontan operation compared to healthy peers[J]. Int J cardiol, 2019, 290: 86-92. doi: 10.1016/j.ijcard.2019.05.040
    [7]
    GRADIDGE E A, GRIMALDI L M, CASHEN K, et al. Near-infrared spectroscopy for prediction of extubation success after neonatal cardiac surgery[J]. Cardiol Young, 2019, 29(6): 787-792. doi: 10.1017/S1047951119000829
    [8]
    SPAEDER M C, KLUGMAN D, SKUROW T K, et al. Perioperative near-infrared spectroscopy monitoring in neonates with congenital heart disease: Relationship of cerebral tissue oxygenation index variability with neurodevelopmental outcome[J]. Pediatr Crit Care Med, 2017, 18(3): 213-218. doi: 10.1097/PCC.0000000000001056
    [9]
    丁丽丽, 王军. 盐酸纳美芬联合鼠神经生长因子对新生儿缺血缺氧性脑病的效果及对其脑电图背景活动和愈后的影响[J]. 河北医学, 2020, 26(1): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HCYX202001023.htm
    [10]
    王海艳, 王丽艳, 王娜, 等. CK、CK-MB在新生儿缺血缺氧性脑病中的变化及临床意义[J]. 国际检验医学杂志, 2017, 38(22): 3177-3178. doi: 10.3969/j.issn.1673-4130.2017.22.039
    [11]
    RAJARAM A, BALE G, KEWIN M, et al. Simultaneous monitoring of cerebral perfusion and cytochrome C oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy[J]. Biomed Opt Express, 2018, 9(6): 2588-2603. doi: 10.1364/BOE.9.002588
    [12]
    车伟坤, 谢淑霞, 李正森, 等. 近红外光谱检测血氧饱和度技术对新生儿脑缺氧的早期评估应用[J]. 医学理论与实践, 2019, 32(17): 2702-2703. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLL201917009.htm
    [13]
    EICHHORN L, ERDFELDER F, KESSLER F, et al. Influence of apnea-induced hypoxia on catecholamine release and cardiovascular dynamics[J]. Int J Sports Med, 2017, 38(2): 85-91. https://pubmed.ncbi.nlm.nih.gov/27454133/
    [14]
    黄丽娟. 枸橼酸咖啡因改善早产儿辅助通气及呼吸暂停的临床效果及安全性分析[J]. 山西医药杂志, 2020, 49(13): 1686-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYY202013019.htm
    [15]
    MAYER B, POHL M, HUMMLER H D, et al. Cerebral oxygenation and desaturations in preterm infants-a longitudinal date analysis[J]. J Neonatal Perinatal Med, 2017, 10(3): 267-273. doi: 10.3233/NPM-16124
    [16]
    WALTER L M, AHMED B, ODOIA, et al. Bradycardias are associated with more severe effects on cerebral oxygenation in very preterm infants than in late preterm infants[J]. Early Hum Dev, 2018, 127(1): 33-41. https://www.sciencedirect.com/science/article/pii/S0378378218303487
    [17]
    VAN B F, MINTZER J P. Monitoring cerebral oxygenation of the immature brain: A neuroprotective strategy?[J]. Pediatr Res, 2018, 84(2): 159-164. doi: 10.1038/s41390-018-0026-8
    [18]
    KATHERIA A C, MORALES A L, POELTLE D, et al. Association between early cerebral oxygenation and neurodevelopmental impairment or death in premature infants[J]. J Perinatol, 2021: 1-6. DOI: 10.1038/s41372-021-00942-w.
    [19]
    KATHERIA A C, HARBERT M J, NAGARAJ S B, et al. The neu-prem trial: Neuromonitoring of brains of infants born preterm during resuscitation-a prospective observational cohort study[J]. J Pediatr, 2018, 198: 209-213. doi: 10.1016/j.jpeds.2018.02.065
    [20]
    BEAUSOLEIL T P, JANAILLAC M, BARRINGTON K J, et al. Cerebral oxygen saturation and peripheral perfusion in the extremely premature infant with intraventricular and/or pulmonary haemorrhage early in life[J]. Sci Rep, 2018, 8(1): 6511-6523. doi: 10.1038/s41598-018-24836-8
    [21]
    江进平, 张志群. 两种通气方式治疗新生儿呼吸窘迫综合征的临床疗效比较[J]. 中华全科医学, 2019, 17(1): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201901028.htm
    [22]
    洪玲, 姚明. 早期联合应用NCPAP和PS治疗新生儿呼吸窘迫综合征效果分析[J]. 现代医药卫生, 2018, 34(15): 2385-2387. doi: 10.3969/j.issn.1009-5519.2018.15.041
    [23]
    朱志成, 陈超. 新生儿经鼻间歇正压通气的研究进展[J]. 中国当代儿科杂志, 2017, 19(12): 1301-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKZ201712016.htm
    [24]
    李磊, 李杰. 无创通气在治疗新生儿呼吸系统疾病中的效果[J]. 安徽医学, 2020, 41(1): 59-62. doi: 10.3969/j.issn.1000-0399.2020.01.018
    [25]
    ERICKSEN K, ALPAN G, LA E F. Effect of ventilator modes on neonatal cerebral and peripheral oxygenation using near-infrared spectroscopy[J]. Acta Paediatr, 2020: 1-6. DOI: 10.1111/apa.15600.
    [26]
    SADEGHNIA A, FOROSHANI M Z, BADIEI Z. A comparative study of the effect of nasal intermittent positive pressure ventilation and nasal continuous positive airway pressure on the regional brain tissue oximetry in premature newborns weighing < 1 500 g[J]. Int J Prev Med, 2017, 8: 41. doi: 10.4103/ijpvm.IJPVM_233_16
    [27]
    PALLERI E, WACKERNAGEL D, WESTER T, et al. Low splanchnic oxygenation and risk for necrotizing enterocolitis in extremely preterm newborns[J]. J Pediatr Gastroenterol Nutr, 2020, 71(3): 401-406. doi: 10.1097/MPG.0000000000002761
    [28]
    VANDER H M, HULSCHER J B F, BOS A F, et al. Near-infrared spectroscopy as a diagnostic tool for necrotizing enterocolitis in preterm infants[J]. Pediatr Res, 2020: 1-8. DOI: 10.1038/s41390-020-01186-8.
    [29]
    KUIK S J, KALTEREN W S, MEBIUS M J, et al. Predicting intestinal recovery after necrotizing enterocolitis in preterm infants[J]. Pediatr Res, 2020, 87(5): 903-909. doi: 10.1038/s41390-019-0634-y
    [30]
    KUIK S J, VAN H M, BRUGGINK J M, et al. Intestinal oxygenation and survival after surgery for necrotizing enterocolitis: An observational cohort study[J]. Ann Surg, 2020: 1-8. DOI: 10.1097/SLA.0000000000003913.
    [31]
    FUHRMAN D Y, KELLUM J A. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30(1): 60-65. doi: 10.1097/ACO.0000000000000412
    [32]
    胡艳, 陶敏, 潘星. 慢性肾脏病人群中高尿酸血症的患病率及危险因素研究[J]. 中华全科医学, 2020, 18(12): 1989-1993. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202012004.htm
    [33]
    刘思, 韦红. 尿生物标志物在新生儿急性肾损伤诊断中的应用研究进展[J]. 现代医药卫生, 2020, 36(20): 3286-3289. doi: 10.3969/j.issn.1009-5519.2020.20.029
    [34]
    章容, 董文斌. 早产儿肾损伤及检测[J]. 中国当代儿科杂志, 2018, 20(4): 332-337. https://www.cnki.com.cn/Article/CJFDTOTAL-BQEB201903031.htm
    [35]
    HARER M W, ADEGBORO C O, RICHARD L J, et al. Non-invasive continuous renal tissue oxygenation monitoring to identify preterm neonates at risk for acute kidney injury[J]. Pediatr Nephrol, 2021: 1-9. DOI: 10.1007/s00467-020-04855-2.
    [36]
    CHOCK V Y, FRYMOYER A, YEH C G, et al. Renal saturation and acute kidney injury in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia[J]. J Pediatr, 2018, 200: 232-239. doi: 10.1016/j.jpeds.2018.04.076
    [37]
    VILLENEUVE A, ARSENAULT V, LACROIX J, et al. Neonatal red blood cell transfusion[J]. Vox Sang, 2020: 1-13. DOI: 10.1111/vox.13036.
    [38]
    AJAYI O O, DAVIS N L, SALEEM B, et al. Impact of red blood cell transfusions on intestinal barrier function in preterm infants[J]. J Neonatal Perinatal Med, 2019, 12(1): 95-101. doi: 10.3233/NPM-1828
    [39]
    BIANCHI M, PAPACCI P, VALENTINI C G, et al. Umbilical cord blood as a source for red-blood-cell transfusion in neonatology: A systematic review[J]. Vox Sang, 2018, 113(8): 713-725. doi: 10.1111/vox.12720
    [40]
    刘露, 张鹏, 徐素华, 等. 红细胞持续输注3小时和4小时改善贫血早产儿脑组织氧合的非随机对照试验[J]. 中国循证儿科杂志, 2018, 13(5): 321-326 doi: 10.3969/j.issn.1673-5501.2018.05.001
    [41]
    SHARAFUTDINOVA D, BALASHOVA E, IONOV O, et al. Application of near-infrared spectroscopy in extremely and very low birth weight infants for red blood cells transfusion[J]. Pediatr Hematol/Oncol Immunopathol, 2020, 19(3): 18-25. doi: 10.24287/1726-1708-2020-19-3-18-25
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (216) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return