Volume 20 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
TONG Xu, YANG Chun, MENG Qing-gang. Risk assessment model of diabetic nephropathy with 'same disease and different syndromes' in traditional Chinese medicine based on multi-label machine learning[J]. Chinese Journal of General Practice, 2022, 20(2): 181-185, 227. doi: 10.16766/j.cnki.issn.1674-4152.002307
Citation: TONG Xu, YANG Chun, MENG Qing-gang. Risk assessment model of diabetic nephropathy with "same disease and different syndromes" in traditional Chinese medicine based on multi-label machine learning[J]. Chinese Journal of General Practice, 2022, 20(2): 181-185, 227. doi: 10.16766/j.cnki.issn.1674-4152.002307

Risk assessment model of diabetic nephropathy with "same disease and different syndromes" in traditional Chinese medicine based on multi-label machine learning

doi: 10.16766/j.cnki.issn.1674-4152.002307
Funds:

 81473800

 YZ-202118

  • Received Date: 2021-08-24
    Available Online: 2022-03-04
  •   Objective  To construct a risk assessment model of diabetic nephropathy with "same disease and different syndromes" in traditional Chinese medicine based on the multi-label machine learning algorithm and compare its effectiveness, and to provides an efficient way to assist traditional Chinese medicine in preventing and treating diabetic nephropathy.  Methods  Based on the data of 8 795 diabetic nephropathy, feature selection was carried out based on the complex network community detection algorithm. Under the two algorithms of "transformation problem" and "algorithm adaptation", the SVM, AdaBoost, ML-RBF and ML-KNN algorithms were used to construct the multi-label learning model, and five evaluation indexes were used to compare the model efficiency.  Results  A multi-label dataset of diabetic nephropathy with 8 795 samples, 113 characteristics and 15 syndrome types was constructed. In terms of model evaluation, ML-KNN had the best performance in Hamming loss, ranking loss and coverage indicators; SVM had three minimum values on one error index, but the average value of one error index of KNN was still the best. The average precision of the four models was more than 90%, and the performance of ML-KNN and ML-RBF were relatively the best. The above four models had better diagnostic efficiency in the multiple syndrome risk assessment of diabetic nephropathy with "same disease and different syndromes", and ML-KNN performance was relatively optimal.  Conclusion  The multi-label machine learning algorithm can be applied to the risk assessment of complex syndromes, such as TCM. It provides a reference for assisting Chinese medicine in the prevention and treatment of diabetic nephropathy and provides a methodological reference for the application of multi-label machine learning in clinical multi-disease diagnosis and treatment in general practice.

     

  • loading
  • [1]
    蔡珊珊, 杨嘉恩, 梁惠卿. 非酒精性脂肪性肝病"同病异证"临床指标研究进展[J]. 中国中医药信息杂志, 2020, 27(1): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYY202001031.htm
    [2]
    朱毛, 李秋容. 糖尿病肾病患者24 h尿蛋白、血清胱抑素C水平与中医证型的相关性[J]. 中国卫生检验杂志, 2021, 31(15): 1864-1867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202115021.htm
    [3]
    邱文超, 郭雪梅, 朱穆朗玛, 等. 中医药治疗糖尿病肾病研究进展[J]. 辽宁中医药大学学报, 2021, 23(4): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-LZXB202104035.htm
    [4]
    TANG G, LI S, ZHANG C, et al. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management[J]. Acta Pharm Sin B, 2021, 11(9): 2749-2767. doi: 10.1016/j.apsb.2020.12.020
    [5]
    刘睿卓, 远方, 宫成军. 加味杞菊地黄汤治疗肝肾阴虚兼血瘀证糖尿病肾病患者的临床疗效及对血清VEGF、IGF-1、TGF-β1水平的影响[J]. 世界中西医结合杂志, 2021, 16(6): 1058-1062, 1067. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZX202106017.htm
    [6]
    LIU Z, HE H, YAN S, et al. End-to-end models to imitate traditional chinese medicine syndrome differentiation in lung cancer diagnosis: Model development and validation[J]. JMIR Med Inform, 2020, 8(6): e17821. doi: 10.2196/17821
    [7]
    李本岳, 李伟荣, 潘华峰, 等. 人工智能对中医诊断的影响[J]. 世界科学技术-中医药现代化, 2020, 22(5): 1624-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202005039.htm
    [8]
    ZHANG H, NI W, LI J, et al. Artificial intelligence-based traditional chinese medicine assistive diagnostic system: Validation study[J]. JMIR Med Inform, 2020, 8(6): e17608. doi: 10.2196/17608
    [9]
    佟旭, 孟庆刚. 基于社区发现的中医多标签数据特征选择研究[J]. 中华中医药杂志, 2016, 31(11): 4763-4765. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201611112.htm
    [10]
    佟旭. 中医药多标签数据特征选择软件: 4688170[CP]. 国家计算机版权局, 2019-12-17.
    [11]
    汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究, 2014, 31(5): 1281-1286. doi: 10.3969/j.issn.1001-3695.2014.05.001
    [12]
    奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201103038.htm
    [13]
    于晓松. 新中国成立70年以来中国全科医学发展与展望[J]. 中华全科医学, 2019, 17(11): 1797-1799. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201911001.htm
    [14]
    李子贇, 佟旭, 李海玉. 中医全科医学诊疗实践及发展优势[J]. 中华全科医学, 2020, 18(9): 1433-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202009001.htm
    [15]
    陈国湘, 李俊, 韦华, 等. 基于人工智能技术的全科医生培养模式探索[J]. 中华全科医学, 2021, 19(2): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202102001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (690) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return